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Contents
• The background is that in a previous Tutorial a simple Windows Forms 

Desktop Application was made that was directly communicating with a SQL 
Database.

• In real-life scenarios you normally don’t have direct access to the database 
due to security issues.
– Also to be able to get direct access to the database you need to specify access to your IP 

address in the server firewall settings. 
– That may be OK for 1 or 2 computers, but what if hundreds or thousands of computer need 

access?
• In a previous Tutorial we made a REST API using PHP.

– The API has CRUD functionality.
– CRUD means Create, Read, Update and Delete data in the Database.
– The REST API implements the GET, POST, PUT and DELETE methods in HTTP to handle the 

CRUD operations.
• In this Tutorial we will use, or consume, that REST API in a Windows Forms 

Desktop Application.
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Previous Tutorials
• Windows Forms CRUD App:

<Link to YouTube>
• Simple PHP REST API:

<Link to YouTube>
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References
• Make HTTP requests with the HttpClient

class:
https://learn.microsoft.com/en-
us/dotnet/fundamentals/networking/http/ht
tpclient

https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient
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REST API and HTTP
• REST APIs are based on/using the HTTP protocol.
• HTTP consists of different methods:

– GET – This method is used to retrieve information from the 
server.

– POST – This is used to send data to the server. Typically used to 
store data from a web page (an HTTML Form) to ,e.g., a 
database.

– PUT – This is used to update information on the server.
– DELETE – This is used to delete information on the server.

• You usually refer to these four methods as CRUD
operations because they allow you to Create (POST), Read 
(GET), Update (PUT), and Delete (DELETE) resources, such 
as information in a database.
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API Summary
• Basically, Web APIs, REST APIs or HTTP APIs 

are basically the same.
• It is just different names for the same.
• They all communicate via Internet and use 

HTTP as communication protocol.
• And they use JSON (or sometimes XML) as 

Data Format.
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Database

CREATE TABLE BOOK

(

BookId int PRIMARY KEY AUTO_INCREMENT,

Title varchar(100) NOT NULL,

Author varchar(100) NOT NULL,

Topic varchar(100) NOT NULL

);

We start by creating a simple Database Table, e.g.:



API Code
<?php
require_once 'config.php’;

// Set the content type to JSON
header('Content-Type: application/json');
// Handle HTTP methods
$method = $_SERVER['REQUEST_METHOD'];

switch ($method) {
case 'GET':

...
break;

case 'POST':
...

break;

case 'PUT':
...

break;

case 'DELETE':
... 

break;

default:
http_response_code(405);
echo json_encode(['error' => 'Method not allowed']);

break;
}
?>



API GET Code
case 'GET':
$json = file_get_contents('php://input');
$data = json_decode($json,true);

$id = $_GET['id']; 
if ($id > 0)
{

$stmt = $pdo->prepare('SELECT * FROM BOOK WHERE BookId=?');
$stmt->execute([$id]);

}
else
{

$stmt = $pdo->query('SELECT * FROM BOOK');
}
$result = $stmt->fetchAll(PDO::FETCH_ASSOC);

echo json_encode($result);
break;

Get All Books or get a specific 
Book specified by its BookId



API POST Code
case 'POST':
$json = file_get_contents('php://input');
$data = json_decode($json,true);
$title = $data['title'];
$author = $data['author'];
$topic = $data['topic'];

$stmt = $pdo->prepare('INSERT INTO BOOK (Title, Author, Topic)  
VALUES (?, ?, ?)');

$stmt->execute([$title, $author, $topic]);

echo json_encode(['message' => 'New Book added successfully']);
break;

Create New Book



API PUT Code
case 'PUT':
$json = file_get_contents('php://input');
$data = json_decode($json,true);
$id = $data['id'];
$title = $data['title'];
$author = $data['author'];
$topic = $data['topic'];

$stmt = $pdo->prepare('UPDATE BOOK SET Title=?, Author=?, Topic=? 
WHERE BookId=?');

$stmt->execute([$title, $author, $topic, $id]);

echo json_encode(['message' => 'Book updated successfully']);
break

Update a specific Book 
specified by its BookId



API DELETE Code
case 'DELETE':
$json = file_get_contents('php://input');
$data = json_decode($json,true);
$id = $data['id’];
if ($id == "")

$id = $_GET['id']; 

$stmt = $pdo->prepare('DELETE FROM BOOK WHERE BookId=?');
$stmt->execute([$id]);

echo json_encode(['message' =>'Book deleted successfully']);
break

Delete a specific Book 
specified by its BookId
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Windows Forms App
• The Windows Forms App will be updated
• The GUI will remain the same
• MainForm.cs, NewBookForm.cs and 

EditBookForm.cs will remain the same
• Only the Book Class (Book.cs) will be updated

– We will replace the ADO.NET code with new Http 
API code



Windows Form App Example
• We need to be able to communicate with 

the PHP REST API hosted on the server.
• We use the built-in HttpClient Class in C#.

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = “..";

HttpResponseMessage response = await client.GetAsync(requestUrl);
string contentJson = await response.Content.ReadAsStringAsync();



HttpClient Class in C#

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = “..";

HttpResponseMessage response = await client.GetAsync(requestUrl);
string contentJson = await response.Content.ReadAsStringAsync();

Here you see a basic example using the HttpClient Class in C#:

You can use the methods GetAsync(..), PostAsync(..), PutAsync(..) and DeleteAsync(..) for 
the HTTP methods GET, POST, PUT and DELETE



Visual Studio
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This method is used to retrieve information from the server/database



C# GET Code (All Books)
public async Task<List<Book>> GetBooks()
{

List<Book> bookList = new List<Book>();

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = "";

HttpResponseMessage response = await client.GetAsync(requestUrl);
string contentJson = await response.Content.ReadAsStringAsync();

bookList = 
(List<Book>)JsonConvert.DeserializeObject<IEnumerable<Book>>(contentJson);

return bookList;
}



C# GET Code (Specific Book)
public async Task<Book> GetBookData(int bookId)
{

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = "?id=" + bookId;

HttpResponseMessage response = await client.GetAsync(requestUrl);
string contentJson = await response.Content.ReadAsStringAsync();

contentJson = contentJson.Replace("[", "");
contentJson = contentJson.Replace("]", "");

Book? book = new Book();
book = Newtonsoft.Json.JsonConvert.DeserializeObject<Book>(contentJson);

return book;
}
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This method is used to send data to the server/database



C# POST Code (New Book)
public async void CreateBook(Book book)
{

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = "";

using StringContent contentJson = new(
System.Text.Json.JsonSerializer.Serialize(new
{

title = book.Title,
author = book.Author,
topic = book.Topic

}),
Encoding.UTF8,
"application/json");

HttpResponseMessage response = await client.PostAsync(requestUrl, contentJson);
string result = await response.Content.ReadAsStringAsync();

}
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This method is used to update information on the server/database



C# PUT Code (Update Book)
public async void EditBook(Book book)
{

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = "index.php";

using StringContent contentJson = new(
System.Text.Json.JsonSerializer.Serialize(new
{

id = book.BookId,
title = book.Title,
author = book.Author,
topic = book.Topic

}),
Encoding.UTF8,
"application/json");

HttpResponseMessage response = await client.PutAsync(requestUrl, contentJson);
string result = await response.Content.ReadAsStringAsync();

}
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This method is used to delete information on the server/database



C# DELETE Code
public async void DeleteBook(int bookId)
{

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = "?id=" + bookId;

HttpResponseMessage response = await client.DeleteAsync(requestUrl);
string result = await response.Content.ReadAsStringAsync();

}



Summary
• In previous Tutorials we have made

– A basic CRUD WinForm Desktop App that communicates 
directly with a SQL Database
• This is “bad practice” and very often not allowed

– So, In another Tutorial we made a simple PHP CRUD REST API
• In this Tutorial we updated the WinForm App so it used the Web 

API instead of direct Daatabse Communication using ADO.NET
• The code is very basic and don’t follow best practice, can be 

better structured, include error handling, authentication, etc.
• The code is made simple to illustrate the basic principles using 

Web APIs
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