
Hans-Petter Halvorsen

https://www.halvorsen.blog

Consuming PHP REST
API in WinForms App

Contents
• The background is that in a previous Tutorial a simple Windows Forms

Desktop Application was made that was directly communicating with a SQL
Database.

• In real-life scenarios you normally don’t have direct access to the database
due to security issues.
– Also to be able to get direct access to the database you need to specify access to your IP

address in the server firewall settings.
– That may be OK for 1 or 2 computers, but what if hundreds or thousands of computer need

access?
• In a previous Tutorial we made a REST API using PHP.

– The API has CRUD functionality.
– CRUD means Create, Read, Update and Delete data in the Database.
– The REST API implements the GET, POST, PUT and DELETE methods in HTTP to handle the

CRUD operations.
• In this Tutorial we will use, or consume, that REST API in a Windows Forms

Desktop Application.

Book App

Old Solution vs New Solution

Book App

DatabaseWindows Forms

Book App

Windows Forms

Server

DatabaseREST API

Client

Client

Server

The GUI will remain the same

ADO.NET

HTTP(S)

Port 1433

Port 80/443

Previous Tutorials
• Windows Forms CRUD App:

<Link to YouTube>
• Simple PHP REST API:

<Link to YouTube>

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

Why use REST API?
Clients

Database

Application

Server

Database

Server

REST API

Application

Clients

Application

Application

Cloud/Internet
/Network

Cloud/Internet
/Network

Normally it is not allowed to connect directly
to a Database located in the Cloud from a
local computer unless you configure and give
access to the IP addresses for those clients.

HTTP

References
• Make HTTP requests with the HttpClient

class:
https://learn.microsoft.com/en-
us/dotnet/fundamentals/networking/http/ht
tpclient

https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient

Hans-Petter Halvorsen

https://www.halvorsen.blog

REST API

Table of Contents

REST API

Consumer
Producer

REST API

HTTP

The Application that
uses the REST API

Request

Response

REST API and HTTP
• REST APIs are based on/using the HTTP protocol.
• HTTP consists of different methods:

– GET – This method is used to retrieve information from the
server.

– POST – This is used to send data to the server. Typically used to
store data from a web page (an HTTML Form) to ,e.g., a
database.

– PUT – This is used to update information on the server.
– DELETE – This is used to delete information on the server.

• You usually refer to these four methods as CRUD
operations because they allow you to Create (POST), Read
(GET), Update (PUT), and Delete (DELETE) resources, such
as information in a database.

REST API

Client Server

HTTP URL

JSON
Database

(or XML)

GET/POST/PUT/DELETE

REST APIResponse

Request

Application

API Summary
• Basically, Web APIs, REST APIs or HTTP APIs

are basically the same.
• It is just different names for the same.
• They all communicate via Internet and use

HTTP as communication protocol.
• And they use JSON (or sometimes XML) as

Data Format.

Hans-Petter Halvorsen

https://www.halvorsen.blog

REST API Example

Table of Contents

Database

CREATE TABLE BOOK

(

BookId int PRIMARY KEY AUTO_INCREMENT,

Title varchar(100) NOT NULL,

Author varchar(100) NOT NULL,

Topic varchar(100) NOT NULL

);

We start by creating a simple Database Table, e.g.:

API Code
<?php
require_once 'config.php’;

// Set the content type to JSON
header('Content-Type: application/json');
// Handle HTTP methods
$method = $_SERVER['REQUEST_METHOD'];

switch ($method) {
case 'GET':

...
break;

case 'POST':
...

break;

case 'PUT':
...

break;

case 'DELETE':
...

break;

default:
http_response_code(405);
echo json_encode(['error' => 'Method not allowed']);

break;
}
?>

API GET Code
case 'GET':
$json = file_get_contents('php://input');
$data = json_decode($json,true);

$id = $_GET['id'];
if ($id > 0)
{

$stmt = $pdo->prepare('SELECT * FROM BOOK WHERE BookId=?');
$stmt->execute([$id]);

}
else
{

$stmt = $pdo->query('SELECT * FROM BOOK');
}
$result = $stmt->fetchAll(PDO::FETCH_ASSOC);

echo json_encode($result);
break;

Get All Books or get a specific
Book specified by its BookId

API POST Code
case 'POST':
$json = file_get_contents('php://input');
$data = json_decode($json,true);
$title = $data['title'];
$author = $data['author'];
$topic = $data['topic'];

$stmt = $pdo->prepare('INSERT INTO BOOK (Title, Author, Topic)
VALUES (?, ?, ?)');

$stmt->execute([$title, $author, $topic]);

echo json_encode(['message' => 'New Book added successfully']);
break;

Create New Book

API PUT Code
case 'PUT':
$json = file_get_contents('php://input');
$data = json_decode($json,true);
$id = $data['id'];
$title = $data['title'];
$author = $data['author'];
$topic = $data['topic'];

$stmt = $pdo->prepare('UPDATE BOOK SET Title=?, Author=?, Topic=?
WHERE BookId=?');

$stmt->execute([$title, $author, $topic, $id]);

echo json_encode(['message' => 'Book updated successfully']);
break

Update a specific Book
specified by its BookId

API DELETE Code
case 'DELETE':
$json = file_get_contents('php://input');
$data = json_decode($json,true);
$id = $data['id’];
if ($id == "")

$id = $_GET['id'];

$stmt = $pdo->prepare('DELETE FROM BOOK WHERE BookId=?');
$stmt->execute([$id]);

echo json_encode(['message' =>'Book deleted successfully']);
break

Delete a specific Book
specified by its BookId

Hans-Petter Halvorsen

https://www.halvorsen.blog

Windows Form
App Example

Table of Contents

Windows Forms App
• The Windows Forms App will be updated
• The GUI will remain the same
• MainForm.cs, NewBookForm.cs and

EditBookForm.cs will remain the same
• Only the Book Class (Book.cs) will be updated

– We will replace the ADO.NET code with new Http
API code

Windows Form App Example
• We need to be able to communicate with

the PHP REST API hosted on the server.
• We use the built-in HttpClient Class in C#.

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = “..";

HttpResponseMessage response = await client.GetAsync(requestUrl);
string contentJson = await response.Content.ReadAsStringAsync();

HttpClient Class in C#

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = “..";

HttpResponseMessage response = await client.GetAsync(requestUrl);
string contentJson = await response.Content.ReadAsStringAsync();

Here you see a basic example using the HttpClient Class in C#:

You can use the methods GetAsync(..), PostAsync(..), PutAsync(..) and DeleteAsync(..) for
the HTTP methods GET, POST, PUT and DELETE

Visual Studio

Hans-Petter Halvorsen

https://www.halvorsen.blog

GET
This method is used to retrieve information from the server/database

C# GET Code (All Books)
public async Task<List<Book>> GetBooks()
{

List<Book> bookList = new List<Book>();

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = "";

HttpResponseMessage response = await client.GetAsync(requestUrl);
string contentJson = await response.Content.ReadAsStringAsync();

bookList =
(List<Book>)JsonConvert.DeserializeObject<IEnumerable<Book>>(contentJson);

return bookList;
}

C# GET Code (Specific Book)
public async Task<Book> GetBookData(int bookId)
{

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = "?id=" + bookId;

HttpResponseMessage response = await client.GetAsync(requestUrl);
string contentJson = await response.Content.ReadAsStringAsync();

contentJson = contentJson.Replace("[", "");
contentJson = contentJson.Replace("]", "");

Book? book = new Book();
book = Newtonsoft.Json.JsonConvert.DeserializeObject<Book>(contentJson);

return book;
}

Hans-Petter Halvorsen

https://www.halvorsen.blog

POST
This method is used to send data to the server/database

C# POST Code (New Book)
public async void CreateBook(Book book)
{

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = "";

using StringContent contentJson = new(
System.Text.Json.JsonSerializer.Serialize(new
{

title = book.Title,
author = book.Author,
topic = book.Topic

}),
Encoding.UTF8,
"application/json");

HttpResponseMessage response = await client.PostAsync(requestUrl, contentJson);
string result = await response.Content.ReadAsStringAsync();

}

Hans-Petter Halvorsen

https://www.halvorsen.blog

PUT
This method is used to update information on the server/database

C# PUT Code (Update Book)
public async void EditBook(Book book)
{

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = "index.php";

using StringContent contentJson = new(
System.Text.Json.JsonSerializer.Serialize(new
{

id = book.BookId,
title = book.Title,
author = book.Author,
topic = book.Topic

}),
Encoding.UTF8,
"application/json");

HttpResponseMessage response = await client.PutAsync(requestUrl, contentJson);
string result = await response.Content.ReadAsStringAsync();

}

Hans-Petter Halvorsen

https://www.halvorsen.blog

DELETE
This method is used to delete information on the server/database

C# DELETE Code
public async void DeleteBook(int bookId)
{

HttpClient client = new HttpClient();
client.BaseAddress = new Uri(url);

string requestUrl = "?id=" + bookId;

HttpResponseMessage response = await client.DeleteAsync(requestUrl);
string result = await response.Content.ReadAsStringAsync();

}

Summary
• In previous Tutorials we have made

– A basic CRUD WinForm Desktop App that communicates
directly with a SQL Database
• This is “bad practice” and very often not allowed

– So, In another Tutorial we made a simple PHP CRUD REST API
• In this Tutorial we updated the WinForm App so it used the Web

API instead of direct Daatabse Communication using ADO.NET
• The code is very basic and don’t follow best practice, can be

better structured, include error handling, authentication, etc.
• The code is made simple to illustrate the basic principles using

Web APIs

Hans-Petter Halvorsen
University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

	Start
	Slide 1: Consuming PHP REST API in WinForms App
	Slide 2: Contents
	Slide 3: Book App
	Slide 4: Old Solution vs New Solution
	Slide 5: Previous Tutorials

	Introduction
	Slide 6: Introduction
	Slide 7: Why use REST API?
	Slide 8: References

	REST API Overview
	Slide 9: REST API
	Slide 10: REST API
	Slide 11: REST API and HTTP
	Slide 12: REST API
	Slide 13: API Summary

	REST API Example
	Slide 14: REST API Example
	Slide 15: Database
	Slide 16: API Code
	Slide 17: API GET Code
	Slide 18: API POST Code
	Slide 19: API PUT Code
	Slide 20: API DELETE Code

	Win Form App Example
	Slide 21: Windows Form App Example
	Slide 22: Windows Forms App
	Slide 23: Windows Form App Example
	Slide 24: HttpClient Class in C#
	Slide 25: Visual Studio
	Slide 26: GET
	Slide 27: C# GET Code (All Books)
	Slide 28: C# GET Code (Specific Book)
	Slide 29: POST
	Slide 30: C# POST Code (New Book)
	Slide 31: PUT
	Slide 32: C# PUT Code (Update Book)
	Slide 33: DELETE
	Slide 34: C# DELETE Code

	Finished
	Slide 35: Summary
	Slide 36

