
Hans-Petter Halvorsen

https://www.halvorsen.blog

Visual Studio and C#

Contents
• Introduction to Visual Studio, C# and .NET
• How to create a basic Windows Desktop Application
• Step-by-step Code Examples using the “Windows Forms

App” template will be provided
• You will learn to use the Solution Explorer, use the Toolbox,

use the Designer to create User Interface, set Properties,
create and use Event Handlers, create and use Variables, use
built-in Methods in your code, create a Method and finally
create a Class with Methods

• This will give you the foundation for creating any kind of
Application using Visual Studio and C#

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

Visual Studio
• Visual Studio is an Integrated Development

Environment (IDE) from Microsoft
• You can use it to create Desktop Applications, Web

Applications, etc.
• You can use different Programming Languages (C#,

VB.NET and F#), but C# is the default option
• Visual Studio comes in 3 different editions;

Professional, Enterprise and Community (free)
• https://visualstudio.microsoft.com/

https://visualstudio.microsoft.com/

Visual Studio

C#
• C# (pronounced “C-Sharp”) is a Programming Language
• Developed by Microsoft
• It runs on the .NET Framework
• C# is an Object-oriented Programming (OOP) Language
• C# is one of the most popular Programming Languages

today
• Flexible Language:
– Can be used for many different types of Applications; Desktop

Applications, Web Applications, Mobile Apps, ..
– All integrated into the Visual Studio IDE

.NET
• .NET is a free, open-source and cross-platform

application platform supported by Microsoft
• In .NET you can choose between different

Programming Languages, but C# is the most used
and recommended .NET language today

• Basically, .NET is just a huge code library hiding all
the “dirty work” to make it easy to make different
types of Applications, either it is Desktop
Applications, Web Applications or Mobile
Applications

.NET from the beginning till today

.NET Framework

.NET Framework

.NET Core

.NET

.NET 5 .NET 6, 7, 8, ..1.0 (2002)

.NET Framework 4.8.x

4.8.x

2.0 3.0 4.0

1.0

Finally, .NET Framework and .NET
Core was merged into the new .NET 5

20202002 Today

4.8.x is the latest version
of .NET Framework.

.NET Core and .NET 5 was a
dramatically change in the
architecture and not compatible with
.NET Framework. That’s why we still
need to choose between the old .NET
Framework, .NET Core and the new
default .NET in Visual Studio today

Open Source and Cross Platform

Before .NET Framework and C#
that was released in 2002, we used
Visual Studio with Visual Basic

Windows Forms
• As mentioned, with .NET you can create all kind of Applications,

including Windows Desktop Applications, Web Applications, Mobile
Applications, etc. using the same tool/IDE (Visual Studio) and the
same Programming Language

• When it comes to Windows Desktop Applications you also have many
choices, like Windows Forms Applications, WPF Applications,
Windows Store Applications, etc.

• Windows Forms Applications is probably the most used of alle these
alternatives

• So, here in this tutorial we will focus on Windows Forms Applications

Visual Studio - Create New Project

.NET Core and .NET 5 was a dramatically
change in the architecture and not
compatible with .NET Framework. That’s
why we still need to choose between the
old .NET Framework, .NET Core and the
new default .NET in Visual Studio today

The new default .NET Windows
Forms Application Template

The old .NET Framework Windows
Forms Application Template

Use this for all new Applications

Use this if you depends
on 3.party libraries and
backward combability

Hans-Petter Halvorsen

https://www.halvorsen.blog

Windows Forms
Application

Table of Contents

Windows Forms Example
• Use the Toolbox
• Use the Designer to create User Interface
• Set Properties
• Event Handlers
• Create and use Variables
• Use built-in Methods in your code
• Create a Method
• Create a Class with Methods

Windows Forms App

Windows Forms App

Toolbox and Designer

Properties

Create GUI

Create C# Code

Running Application

Improvements
• Change Widows Title from “Form1” to something

meaningful in Properties window
• Disable “Maximize” window in Properties window
• Enable Button if TextBox is empty
• Use If .. Else
• Split into First Name and Last Name
• .. (lots of more improvements can be made)

Updated Application

Updated Code

Final Code
using System.Windows.Forms;

namespace HelloWorld
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();

btnClick.Enabled = false;
}

private void btnClick_Click(object sender, EventArgs e)
{

string fullName = txtName.Text;

var subNames = fullName.Split(' ');
string firstName = subNames[0];
string lastName = subNames[1];

string message = "Your First Name is: " + firstName + ". And your Last Name is: " + lastName;

MessageBox.Show(message);
}

private void txtName_TextChanged(object sender, EventArgs e)
{

string name = txtName.Text;

if (name.Length > 0)
btnClick.Enabled = true;

else
btnClick.Enabled = false;

}
}

}

Updated Application

Classes and Methods
We will update our Application:
• We will create a separate Method
• We will create a separate Class and put the

Method inside the Class

Method
string SplitFullName(string fullName)
{

var subNames = fullName.Split(' ');
string firstName = subNames[0];
string lastName = subNames[1];

string message = "Hello! Your First Name is " + firstName + " and your Last Name is " + lastName;

return message;
} private void btnClick_Click(object sender, EventArgs e)

{
string fullName = txtName.Text;

string message = SplitFullName(fullName);

MessageBox.Show(message);
}

Creating the Method:

Using the Method:

Final Code
namespace HelloWorld
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();

btnClick.Enabled = false;
}

private void btnClick_Click(object sender, EventArgs e)
{

string fullName = txtName.Text;

string message = SplitFullName(fullName);

MessageBox.Show(message);
}

private void txtName_TextChanged(object sender, EventArgs e)
{

string name = txtName.Text;

if (name.Length > 0)
btnClick.Enabled = true;

else
btnClick.Enabled = false;

}

string SplitFullName(string fullName)
{

var subNames = fullName.Split(' ');
string firstName = subNames[0];
string lastName = subNames[1];

string message = "Hello! Your First Name is " + firstName + " and your Last Name is " + lastName;

return message;
}

}
}

Class
namespace HelloWorld
{

public class Person
{

public string SplitFullName(string fullName)
{

var subNames = fullName.Split(' ');
string firstName = subNames[0];
string lastName = subNames[1];

string message = "Hello! Your First Name is " + firstName + " and your Last Name is " + lastName;

return message;
}

}
}

private void btnClick_Click(object sender, EventArgs e)
{

string fullName = txtName.Text;

Person person = new Person();
string message = person.SplitFullName(fullName);

MessageBox.Show(message);
}

Creating the Class and Method:

Using the Class and Method:

Final Code
using System.Windows.Forms;

namespace HelloWorld
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();

btnClick.Enabled = false;
}

private void btnClick_Click(object sender, EventArgs e)
{

string fullName = txtName.Text;

Person person = new Person();

string message = person.SplitFullName(fullName);

MessageBox.Show(message);
}

private void txtName_TextChanged(object sender, EventArgs e)
{

string name = txtName.Text;

if (name.Length > 0)
btnClick.Enabled = true;

else
btnClick.Enabled = false;

}
}

}

Summary
• We have used Visual Studio and C# and created a basic

Windows Desktop Application.
• Step-by-step Code Examples using the “Windows Forms

App” template have been provided.
• You have learned to use the Solution Explorer, use the

Toolbox, use the Designer to create User Interface, set
Properties, create and use Event Handlers, create and use
Variables, use built-in Methods in your code, create a
Method and finally create a Class with Methods.

• This will give you the foundation for creating any kind of
Applications using Visual Studio and C#.

Hans-Petter Halvorsen
University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

