
ASP.NET Core

Hans-Petter Halvorsen

Unit Testing

Contents

1. What is Testing?

– Short Introduction to Testing

2. What is Unit Testing?

3. Unit Testing in Visual Studio

Introduction to Testing

Hans-Petter Halvorsen

Requirements
Analysis

Design

Implementation

Testing

Maintenance

Planning
Deployment

SRS

SDD

STD

Code

Installation
Guides

User Guides

Gantt Chart

with ER Diagram, UML Diagrams, CAD Drawings

Test
Documentation

Software Requirements
Specifications

Software Design Documents

System Documentation

Software Test Plan (STP)

Project Planning

End-User
Documentation

System
Documentation

Software Test Documentation

SDP
Software Development

Plan

Gantt Chart

The Software
Development

Lifecycle
(SDLC)

Why Find Bugs early?

Software Development Life Cycle (SDLC)

Validation Testing Defect Testing

Testing

Demonstrate to the Developer and the
Customer that the Software meets its
Requirements.

I. Sommerville, Software Engineering, 10 ed.: Pearson, 2015.

Custom Software:
There should be at least one test for every
requirement in the SRS document.
Generic Software:
There should be tests for all of the system
features that will be included in the product
release.

Find inputs or input sequences where
the behavior of the software is incorrect,
undesirable, or does not conform to its
specifications.
These are caused by defects (bugs) in
the software.

Test Categories
Black-box vs. White-box Testing

White-box Testing: You need to have
knowledge of how (Design and
Implementation) the system is built

Black-box Testing: You need no
knowledge of how the system is created.

Typically done by Developers, etc

Levels of Testing

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Any module, program, object separately
testable

Interface between components; interactions
with other systems (OS, HW, etc)

The behavior of the whole product (system) as
defined by the scope of the project

Is the responsibility of the customer – in general. The goal
is to gain confidence in the system; especially in its non-
functional characteristics

Levels of Testing
Unit Testing: Test each parts
independently and isolated

Integration Testing: Make sure
that different pieces work
together. Test the Interfaces
between the different pieces.
Interaction with other systems
(Hardware, OS, etc.)

System Testing: Test the whole system

Regression Testing: Test
that it still works after a
change in the code, i.e.,
run all Unit Tests, etc.

Levels of Testing

Unit Testing

Regression Testing

Integration Testing

System/Validation
Testing

Acceptance Testing

Start

Finish

Requirements & Design

Start Development
Unit Tests are written by the Developers as part of the
Programming. Each part is developed, and Unit tested
separately (Every Class and Method in the code)

The Customer needs to test and approve the software
before he can take it into use. FAT/SAT.

System testing is typically Black-box Tests that validate
the entire system against its requirements, i.e Checking
that a software system meets the specifications

Integration testing means the system is put together
and tested to make sure everything works together.

Regression testing is testing the system to check that
changes have not “broken” previously working code.
Both Manually & Automatically (Re-run Unit Tests)

Unit Testing

Hans-Petter Halvorsen

Unit Testing

System to be Tested Then we take out each Unit
and Test it by making a Unit
Test for each piece of your
system

What are Unit Tests
• Unit Testing (or component testing) refers to tests

that verify the functionality of a specific section of
code, usually at the function level.

• In an object-oriented environment, this is usually at
the class and methods level.

• Unit Tests are typically written by the developers as
part of the programming

• Automatically executed (e.g., Visual Studio and
Team Foundation Server have built-in functionality for Unit Testing)

Test Driven Development (TDD)

• Coding and Testing are done in parallel

• The Tests are normally written before the Code

• Introduced as part of eXreme Programming
(XP) (an Agile method)

• Unit Tests are important part of Software
Development today – either you are using TDD
or not

Unit Tests Frameworks in Visual Studio

• MSTest

• NUnit

• xUnit

We will use MSTest Test Project (.NET Core)

Basic Concept in Unit Testing

...

Assert.AreEqual(expected, actual, 0.001, ”Test failed because...");

The basic concept in Unit Testing is to Compare the
results when running the Methods with some Input
Data (“Actual”) with some Known Results (“Expected”)

Example:

Compare
Error margin Error message shown if

the Test fails

All Unit Tests
Framework have the
Assert Class

The Assert Class contains different Methods that can
be used in Unit Testing

Unit Tests – Best Practice
• A Unit Test must only do one thing
• Unit Test must run independently
• Unit Tests must not be depending on the environment
• Test Functionality rather than implementation
• Test public behavior; private behavior relates to implementation

details
• Avoid testing UI components
• Unit Tests must be easy to read and understand
• Create rules that make sure you need to run Unit Tests (and they

need to pass) before you can Check-in your Code in the Source
Code Control System

http://www.uio.no/studier/emner/matnat/ifi/INF5530

http://www.uio.no/studier/emner/matnat/ifi/INF5530

Unit Testing in Visual Studio

Hans-Petter Halvorsen

Unit Testing in Visual Studio

• Visual Studio have built-in features for Unit
Testing

• We need to include a “Test Project” in our
Solution

Test Method Requirements

A test method must meet the following
requirements:

• The method must be decorated with the
[TestMethod] attribute.

• The method must return void.

• The method cannot have parameters.

Example
Unit Testing in Visual Studio

Hans-Petter Halvorsen

ASP.NET Core Application

Convert to Fahrenheit

𝑇𝐹 =
9

5
𝑇𝐶 + 32

A simple sketch of the User Interface:

Conversion Formula:

Create the following Application (e.g., WinForm App or ASP.NET App)

Celsius:
22 ℃ Convert 71,6 ℉

Fahrenheit:

User Interface

Add Class i your Models Folder
namespace FahrenheitApp.Models
{

public static class Temperature
{

public static double CelciusToFahrenheit(double Tc)
{

double Tf;

Tf = 9 / 5 * Tc + 32;

return Tf;
}

}
}

Create your GUI

Testing

𝑇𝐹 =
9

5
𝑇𝐶 + 32

𝑇𝐹 =
9

5
∙ 22 + 32

=71.6

We get wrong Answer!

Unit Test Project

Create Unit Test Project

Create Unit Test Project

Create Unit Test Project

You have now 2 Projects in your Solution Explorer

Add Reference to the Code under Test

Create the Unit Test Code

Create the Unit Test Code

using Microsoft.VisualStudio.TestTools.UnitTesting;
using FahrenheitApp.Models;

namespace UnitTestTemperature
{

[TestClass]
public class UnitTestFahrenheit
{

[TestMethod]
public void TestFahrenheitConversion()
{

double temperatureCelcius = 22;
double temperatureFahrenheitActual;
double temperatureFahrenheitExpected = 71.6;

temperatureFahrenheitActual = Temperature.CelciusToFahrenheit(temperatureCelcius);

Assert.AreEqual(temperatureFahrenheitExpected, temperatureFahrenheitActual, 0.001, "Temperature conversion
not correctly");

}
}

}

Test Explorer

Start Running the Unit Test

Test Results

namespace FahrenheitApp.Models
{

public static class Temperature
{

public static double CelciusToFahrenheit(double Tc)
{

double Tf;

Tf = 9 / 5 * Tc + 32;

return Tf;
}

}
}

Debugging 𝑇𝐹 =
9

5
𝑇𝐶 + 32

Probably Error in Formula?
What is wrong?

namespace FahrenheitApp.Models
{

public static class Temperature
{

public static double CelciusToFahrenheit(double Tc)
{

double Tf;

Tf = Tc * 9/5 + 32;

return Tf;
}

}
}

Fixing Bugs 𝑇𝐹 =
9

5
𝑇𝐶 + 32

Re-run Unit Test

Everything Works! The Test Passed!

Checking Code Coverage

Note! The code coverage feature is available only in Visual Studio Enterprise edition.

Code Coverage
• Code coverage is a measure used in software testing. It describes

the degree to which the source code of a program has been
tested.

• Depending on the input arguments, different parts of the code will
be executed. Unit Tests should be written to cover all parts of the
code.

Note! The code coverage
feature is available only

in Visual Studio
Enterprise edition.

Code Coverage Results

In this case the Unit Test covered 100% of the code. If we use If…Else… or similiar, we typically
need to write Unit Test for each If…Else… in order to cover all the Code

References

• https://docs.microsoft.com/en-
us/visualstudio/test/getting-started-with-unit-
testing

https://docs.microsoft.com/en-us/visualstudio/test/getting-started-with-unit-testing

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

YouTube: https://www.youtube.com/IndustrialITandAutomation

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/
https://www.youtube.com/IndustrialITandAutomation

