
Raspberry Pi 
and Python

Hans-Petter Halvorsen

https://www.halvorsen.blog



Raspberry Pi and Python



Raspberry Pi and Python

Hans-Petter Halvorsen

2021



Raspberry Pi and Python
c©Hans-Petter Halvorsen

January 4, 2021

1



Preface

Python is a popular programming language, and it is one of the most used pro-
gramming languages today.

Python works on all the main platforms and operating systems used today, such
Windows, macOS, and Linux.

Python is a multi-purpose programming language, which can be use for simu-
lation, creating web pages, communicate with database systems, etc.

My Blog/Web Site [1]:
https://www.halvorsen.blog

Here you find lots of technical resources about Technology, Programming, Soft-
ware Engineering, Automation and Control, Industrial IT, etc.

Here you find my Web page with Python resources:

https://www.halvorsen.blog/documents/programming/python/

These resources are a supplement to this textbook. Here you can download the
software, download code examples, etc.

This Textbook is written in LATEXusing Overleaf.

LATEXis a document preparation system used for the communication and publi-
cation of scientific documents.

2



For more information about LATEX:
https://www.latex-project.org

Overleaf is a web-bases LATEXsystem, meaning you can write your LATEXdocuments
in your web browser, you co-work and share documents with others.

For more information about Overleaf:
https://www.overleaf.com

Python Books

You find other Python textbooks within different domains on my Python Web
page:
https://www.halvorsen.blog/documents/programming/python/

Python Books:

• Python Programming - This is a textbook in Python Programming
with lots of Practical Examples and Exercises. You will learn the necessary
foundation for basic programming with focus on Python.

• Python for Science and Engineering - This is a textbook in Python
Programming with lots of Examples, Exercises, and Practical Applications
within Mathematics, Simulations, etc. The focus is on numerical calcu-
lations in mathematics and engineering. Necessary theory is presented in
addition to many practical examples.

• Python for Control Engineering - This is a textbook in Python Pro-
gramming with lots of Examples, Exercises, and Practical Applications
within Mathematics, Simulations, Control Systems, DAQ, Database Sys-
tems, etc. The focus is on the use of Python within measurements, data
collection (DAQ), control technology, both analysis of control systems
(stability analysis, frequency response, ...) and implementation of control
systems (PID, etc.). Required theory is presented in addition to many
practical examples and exercises in Python.

• Python for Software Development - This is a textbook in Python Pro-
gramming with lots of Examples, Exercises, and Practical Applications
within Software Systems, Software Development, Software Engineering,
Database Systems, Web Application Desktop Applications, GUI Applica-
tions, etc. The focus is on the use of Python for creating modern Software
Systems. Required theory is presented in addition to many practical ex-
amples and exercises in Python.

3



Video Resources

In addition to the textbooks mentioned, lots of videos explaining and comple-
ments the different Python topics and examples within the textbook have been
made. These are both available on my website and on YouTube.

Blog:
https://www.halvorsen.blog

Python Resources:
https://www.halvorsen.blog/documents/programming/python/

Python Programming Videos:
https://www.youtube.com/playlist?list=PLdb-TcK6Aqj2lH1mtPqlOo−Y ki5UPzp4

Python for Science and Engineering Videos:
https://www.youtube.com/playlist?list=PLdb-TcK6Aqj2hlH55Bn5oxFIvyoVbXxQS

Python for Control Engineering Videos:
https://www.youtube.com/playlist?list=PLdb-TcK6Aqj1Kg6pV3zlrpUnPIRwG2Ox

Python for Software Development Videos:
https://www.youtube.com/playlist?list=PLdb-TcK6Aqj0E01L69fySfBSemVTCilL

Raspberry Pi and Python:
https://www.youtube.com/playlist?list=PLdb-TcK6Aqj3Sf5omYT-MLmxckclHi2i7

YouTube Channel @Industrial IT and Automation
https://www.youtube.com/IndustrialITandAutomation

Programming

The way we create software today has changed dramatically the last 30 years,
from the childhood of personal computers in the early 80s to today’s powerful
devices such as Smartphones, Tablets and PCs.

The Internet has also changed the way we use devices and software. We still
have traditional desktop applications, but Web Sites, Web Applications and so-
called Apps for Smartphones, etc. are dominating the software market today.

We need to find and learn Programming Languages that are suitable for the
New Age of Programming.

We have today several thousand different Programming Languages today. I
guess you will need to learn more than one Programming Language to survive
in today’s software market.

4



You find lots of Programming Resources here:
https://www.halvorsen.blog/documents/programming/

Software Engineering

Software Engineering is the discipline for creating software applications. A
systematic approach to the design, development, testing, and maintenance of
software.

The main parts or phases in the Software Engineering process are:

• Planning

• Requirements Analysis

• Design

• Implementation

• Testing

• Deployment and Maintenance

You find lots of Software Engineering Resources here:
https://www.halvorsen.blog/documents/programming/softwareengineering/

5



6



Contents

I Raspberry Pi 10

1 Raspberry Pi 11
1.1 Raspberry Pi vs Arduino . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Getting Started with Raspberry Pi . . . . . . . . . . . . . . . . . 13
1.3 Raspberry Pi OS . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 The Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Python Programming . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7.1 LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7.2 GPIO Features . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . 15

II Getting Started with Python 20

2 Introduction 21
2.1 The New Age of Programming . . . . . . . . . . . . . . . . . . . 21
2.2 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 What is Python? 27
3.1 Introduction to Python . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Interpreted vs. Compiled . . . . . . . . . . . . . . . . . . 28
3.2 Python Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Python Packages for Science and Numerical Computations 30
3.3 Anaconda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Python Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Python IDLE . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Visual Studio Code . . . . . . . . . . . . . . . . . . . . . . 32
3.4.3 Spyder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.4 Visual Studio . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.5 PyCharm . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.6 Wing Python IDE . . . . . . . . . . . . . . . . . . . . . . 33
3.4.7 Jupyter Notebook . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Installing Python . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1 Python Windows 10 Store App . . . . . . . . . . . . . . . 34
3.6.2 Installing Anaconda . . . . . . . . . . . . . . . . . . . . . 34

7



3.6.3 Installing Visual Studio Code . . . . . . . . . . . . . . . . 34

4 Start using Python 36
4.1 Python IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 My first Python program . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Python Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Running Python from the Console . . . . . . . . . . . . . . . . . 37

4.4.1 Opening the Console on macOS . . . . . . . . . . . . . . . 38
4.4.2 Opening the Console on Windows . . . . . . . . . . . . . 39
4.4.3 Add Python to Path . . . . . . . . . . . . . . . . . . . . . 39

4.5 Scripting Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.1 Run Python Scripts from the Python IDLE . . . . . . . . 41
4.5.2 Run Python Scripts from the Console (Terminal) macOS 42
4.5.3 Run Python Scripts from the Command Prompt in Win-

dows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.4 Run Python Scripts from Spyder . . . . . . . . . . . . . . 43

5 Basic Python Programming 46
5.1 Basic Python Program . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Get Help . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 String Input . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Built-in Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Python Standard Library . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Using Python Libraries, Packages and Modules . . . . . . . . . . 52

5.5.1 Python Packages . . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Plotting in Python . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6.1 Subplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

III Python Programming 60

6 Python Programming 61
6.1 If ... Else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 For Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3.1 Nested For Loops . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 While Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Creating Functions in Python 70
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Functions with multiple return values . . . . . . . . . . . . . . . 72
7.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8



8 Creating Classes in Python 76
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2 The init () Function . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Creating Python Modules 81
9.1 Python Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10 File Handling in Python 84
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.2 Write Data to a File . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.3 Read Data from a File . . . . . . . . . . . . . . . . . . . . . . . . 85
10.4 Logging Data to File . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.5 Web Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

11 Error Handling in Python 89
11.1 Introduction to Error Handling . . . . . . . . . . . . . . . . . . . 89

11.1.1 Syntax Errors . . . . . . . . . . . . . . . . . . . . . . . . . 89
11.1.2 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . 89

11.2 Exceptions Handling . . . . . . . . . . . . . . . . . . . . . . . . . 90

12 Installing and using Python Packages 92
12.1 What is PIP? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

IV Raspberry Pi Python Programming 93

13 Raspberry Pi and Python 94

14 Raspberry Pi and GPIO 95

15 Raspberry Pi and ThingSpeak 96

16 Raspberry Pi using SPI and I2C 97

17 Raspberry Pi and CircuitPython 98

18 Raspberry Pi using Camera 99

19 Raspberry Pi with MATLAB 100

V Resources 101

20 Python Resources 102
20.1 Python Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 102
20.2 Python Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
20.3 Python Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
20.4 Python Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
20.5 Python in Visual Studio . . . . . . . . . . . . . . . . . . . . . . . 103

9



Part I

Raspberry Pi

10



Chapter 1

Raspberry Pi

Raspberry Pi is a tiny (about 9x6cm), low-cost ($35+), single-board computer
that supports embedded Linux operating systems [2].

The recommended Operating System is called Raspberry Pi OS (Linux based).
Figure 1.1 shows the Raspberry Pi.

Figure 1.1: Raspberry Pi

The Raspberry Pi is a small computer that can do lots of things It has a small
footprint (about 9x6cm) and it is cheap ($35+) You plug it into a monitor and
attach a keyboard and mouse It has so-called GPIO pins (General Purpose In-
put/Output) for connection sensors and other electronic components like LEDs,
etc.

11



Raspberry Pi is as well suited for prototyping, datalogging and different elec-
tronics projects, a media center, etc. It can be used to learn programming, it
and other technical skills, etc. RP has limited power (CPU, RAM, etc.) so it
cannot normally replace a desktop computer or laptop for ordinary use

For more information about the Raspberry Pi, see:
https://www.raspberrypi.org

1.1 Raspberry Pi vs Arduino

You have probably already heard of Arduino? So whats the difference between
Raspberry Pi and Arduino?

Figure 1.2 shows the Arduino Uno, which is the most popular Arduino device.

Figure 1.2: Arduino Uno

Here are the main differences:

Rasberry Pi

• Raspberry PI is a Microcomputer

• It has an ordinary Operating System (OS)

• You can connect USB devices, Keyboard, Mouse, Monitors, etc.

• It has a “hard-drive“ in form of a microSD card

• RP has Bluetooth, Wi-Fi, and Ethernet connection

12



• RP has basically all the features an ordinary computer has but in a much
smaller package

• Uptill 8 Gb RAM

• RP runs Linux applications

Arduino:

• Arduino is a Microcontroller

• Arduino has a Bootloader and not an ordinary operating system

• Arduino is NOT a computer, only a small controller, whose purpose is to
control things

• No Bluetooth, Wi-Fi (some models have), and Ethernet (but can be pro-
vided as so-called Shields)

• Very little RAM (a few Kb)

• Inexpensive

1.2 Getting Started with Raspberry Pi

What do you typically need to get started with Raspberry Pi?

• Raspberry Pi

• microSD Card (+ Adapter)

• Power Supply

• microHDMI to HDMI Cable

• Monitor

• Mouse

• Keyboard

Figure 1.3 shows the Raspberry Pi connectors. The Raspberry Pi has 4 USB A
connectors, one Ethernet connector, two microHDMI connectors, USB C con-
nector for Power Supply, GPIO connector and camera connector.

1.3 Raspberry Pi OS

In order make your Raspberry Pi up and running you need to install an Op-
erating System (OS). The OS for Raspberry Pi is called ”Raspberry Pi OS”
(previously known as Raspbian). Raspberry Pi runs a version of an operating
system called Linux (Windows and macOS are other operating systems). To in-
stall the necessary OS, you need a microSD card. Then you use the ”Raspberry
Pi Imager” in order to download the OS to the microSD card.

13



Figure 1.3: Raspberry Pi Connectors

Figure 1.4 shows the Raspberry Pi OS.

You find detailed step by step instructions here:
https://www.raspberrypi.org/software

1.4 The Terminal

Figure 1.5 shows the Terminal.

1.5 Tools

1.6 Python Programming

Figure 1.6 shows Thonny.

Figure 1.6 shows Thonny Manage Packages.

1.7 GPIO

Figure ?? shows the GPIO connector.

1.7.1 LED

Figure 1.9 shows LED wiring.

Figure 1.10 shows LED wiring.

14



Figure 1.4: Raspberry Pi OS

1.7.2 GPIO Features

Figure 1.11 shows how you enable/disable the different interfaces on the Rasp-
berry Pi hardware.

1.8 Additional Resources

In addition to the textbook, lots of videos explaining and complements the dif-
ferent Python topics and examples within the textbook have been made. These
videos are both available on my website and on YouTube.

Blog:
https://www.halvorsen.blog

Python Resources:
https://www.halvorsen.blog/documents/programming/python/

Python Programming Videos:
https://www.youtube.com/playlist?list=PLdb-TcK6Aqj2lH1mtPqlOo−Y ki5UPzp4

Raspberry Pi and Python:
https://www.youtube.com/playlist?list=PLdb-TcK6Aqj3Sf5omYT-MLmxckclHi2i7

15



Figure 1.5: Tee Terminal

Figure 1.6: Thonny

16



Figure 1.7: Thonny Manage Packages

Figure 1.8: GPIO Connector

17



Figure 1.9: LED wiring

Figure 1.10: LED wiring

18



Figure 1.11: Enable/Disable Raspberry Pi Hardware Interfaces

19



Part II

Getting Started with
Python

20



Chapter 2

Introduction

With this textbook you will learn basic Python programming. The textbook
contains lots of examples and self-paced tasks that the users should go through
and solve in their own pace.

You will find additional resources on my blog/web site [1].
https://www.halvorsen.blog

My Web Site about Python is:
https://www.halvorsen.blog/documents/programming/python/

See Figure 2.1

2.1 The New Age of Programming

The way we create software today has changed dramatically the last 30 years,
from the childhood of personal computers in the early 80s to today’s powerful
devices such as Smartphones, Tablets and PCs.

The Internet has also changed the way we use devices and software. We still
have traditional desktop applications, but Web Sites, Web Applications and so-
called Apps for Smartphones, etc. are dominating the software market today.

We need to find and learn Programming Languages that are suitable for the
New Age of Programming.

We have today several thousand different Programming Languages, so why
should we learn Python? I guess you will need to learn more than one Pro-
gramming Language to survive in today’s software market. Python is easy to
learn, so it it a good starting point for new programmers.

Python is an interpreted, high-level, general-purpose programming language.
Created by Guido van Rossum and first released in 1991 [3].

21



Figure 2.1: Web Site - Python

Python is a fairly old Programming Language (1991) compared to many other
Programming Languages like C# (2000), Swift (2014), Java (1995), PHP (1995).

Python has during the last 10 years become more and more popular. Today,
Python has become one of the most popular Programming Languages.

There are many different rankings regarding which programming language which
is most popular. In most of these ranking, Python is in top 10.

One of these rankings is the IEEE Spectrum’s ranking of the top programming
languages [4].

From this ranking we see that Python is the most popular Programming Lan-
guage in 2018. See Figure 2.2
As we see in Figure 2.2 they categorize the different Programming Languages
into the following categories:

• Web

22



Figure 2.2: The Most Popular Programming Languages

• Mobile

• Enterprise

• Embedded

According to Figure 2.2 we see that Python can be used to program Web Ap-
plications, Enterprise Applications and Embedded Applications.

So far Python is not used or not optimized for creating Mobile Applications. We
have today 2 major Mobile platforms; iOS Applications are mainly programmed
with the Swift Programming language, while Android Applications are mainly
programmed with either Java or Kotlin.

Another survey is the ”Stack Overflow Developer Survey 2018” [5]. See Figure
2.3.

As we can see from [6] and Figure 2.4, Python becomes more and more popular
year by year.

Based on Figure 2.4, the source [6] try to predict the future of Python, see
Figure 2.5.

Based on the surveys and statistics mention above, obviously Python is a pro-
gramming language that you should learn.

Lets summarize:

• Python is fun to learn and use and it is also named after the British
comedy group called Monty Python.

• Python has a simple and flexible code structure and the code is easy to
read.

23



Figure 2.3: The Top Programming Languages - Stack Overflow Survey

• Python is highly extendable due to its high number of free available
Python Packaged and Libraries

• Python can be used on all platforms (Windows, macOS and Linux).

• Python is multi-purpose and can be used for to program Web Applications,
Enterprise Applications and Embedded Applications, and within Data
Science and Engineering Applications.

• The popularity of Python is growing fast.

• Python is open source and free to use

• The growing Python community makes it easy to find documentation,
code examples and get help when needed

In general, Python is a multipurpose programming language that can be used
in many situations. But there is not one programming language which is best
in all kind of situations, so it is important that you know about and have skills
in different languages.

My list of recommendations (one of many):

• Visual Studio and C

• LabVIEW - a graphical programming language well suited for hardware
integration, taking measurements and data logging

• MATLAB - Numerical calculations and Scientific computing

• Python - Numerical calculations, and Scientific computing, etc.

• Web Programming, such as HTML, CSS, JavaScript and a Server-side
framework/programming language like PHP, ASP.NET (C or VB.NET),
Django (Python based)

24



Figure 2.4: The Incredible Growth of Python

• Databases (such as SQL Server and MySQL) and using the Structured
Query Language (SQL) or the upcoming NoSQL databases

• App Development for the 2 main platforms iOS (XCode using the Swift
Programming Language) and Android (Android Studio using the Java
Programming Language or Kotlin Programming language)

If you have skills in most of the tools, programming languages and frameworks
mention above, you are well suited for working as a full-time programmer or
software engineer.

2.2 MATLAB

If you are looking for MATLAB, please see the following:
https://www.halvorsen.blog/documents/programming/matlab/

25



Figure 2.5: The Future of Python

26



Chapter 3

What is Python?

3.1 Introduction to Python

Python is an open source and cross-platform programming language, that has
become increasingly popular over the last ten years. It was first released in
1991. Latest version is 3.7.0. CPython is the reference implementation of the
Python programming language. Written in C, CPython is the default and most
widely-used implementation of the language.

Python is a multi-purpose programming languages (due to its many extensions),
examples are scientific computing and calculations, simulations, web develop-
ment (using, e.g., the Django Web framework), etc.

Python Home Page [7]:
https://www.python.org

The programming language is maintained and available from (Python Software
Foundation): https://www.python.org Here you can download the basic Python
features in one package, which includes the Python programming language in-
terpreter, and a basic code editor, or an integrated development environment,
called IDLE. See Figure 3.1

But this is just the Python core, i.e. the interpreter a very basic editor, and the
minimum needed to create basic Python programs.

Typically you will need more features for solving your tasks. Then you can in-
stall and use separate Python packages created by third parties. These packages
need to be downloaded and installed separately (typically you use something
called PIP), or you choose to use, e.g., a distribution package like Anaconda.

Python is an object-oriented programming language (OOP), but you can use
Python in basic application without the need to know about or use the object-
oriented features in Python.

Python is an interpreted programming language, this means that as a developer

27



Figure 3.1: IDLE - Basic Python Editor

you write Python (.py) files in a text editor and then put those files into the
python interpreter to be executed. Depending on the Editor you are using, this
is either done automatically, or you need to do it manually.

Here are some important Python sources: [7], [8], [9].

3.1.1 Interpreted vs. Compiled

What are the differences between Interpreted programming languages and Com-
piled programming languages? What kind should you choose, and why should
you bother?

Programming languages generally fall into one of two categories: Compiled or
Interpreted. With a compiled language, code you enter is reduced to a set of
machine-specific instructions before being saved as an executable file.
Both approaches have their advantages and disadvantages.

28



With interpreted languages, the code is saved in the same format that you en-
tered. Compiled programs generally run faster than interpreted ones because
interpreted programs must be reduced to machine instructions at run-time. It
is usually easier to develop applications in an interpreted environment because
you don’t have to recompile your application each time you want to test a small
section.

Python is an interpreted programming language, while e.g., C/C++ are trans-
lated by running the source code through a compiler, i.e., C/C++ are compiled
languages.

Interpreted languages, in contrast, must be parsed, interpreted, and executed
each time the program is run.

Another example of an interpreted programming language is PHP, which is
mainly used to create dynamic web pages and web applications.

Compiled languages are all translated by running the source code through a
compiler. This results in very efficient code that can be executed any number of
times. The overhead for the translation is incurred just once, when the source
is compiled; thereafter, it need only be loaded and executed.

During the design of an application, you might need to decide whether to use a
compiled language or an interpreted language for the application source code.

Interpreted languages, in contrast, must be parsed, interpreted, and executed
each time the program is run

Thus, an interpreted language is generally more suited for doing ”ad hoc” cal-
culations or simulations, while compiled languages are better for permanent
applications where speed is in focus.

3.2 Python Packages

With Python you don’t get so much out of the box. Instead of having all of
its functionality built into its core, you need to install different packages for
different topics.

This approach has advantages and disadvantages. An disadvantage is that you
need to install these packages separately and then later import these modules
in your code.

This is also typical approach for open source software, because everybody can
create their own Python packages and distribute them. In that way you also
find Python packages for almost everything, from Scientific Computing to Web
Development.

29



These packages need to be downloaded and installed separately, or you choose
to use, e.g., a distribution package like Anaconda, where you typically get the
packages you need for scientific computing. With Anaconda you typically get
the same features as with MATLAB.

Lots of Python packages exists, depending on what you are going to solve.
We have Python packages for Desktop GUI Development, Database Develop-
ment, Web Development, Software Development, etc.

See an overview of Applications for Python:
https://www.python.org/about/apps/

See also the Python Package Index (PyPI) web site:
https://pypi.org

Here you can search for, download and install many hundreds Python Packages
within different topics and applications. You can also make your own Python
Packages and distribute them here.

3.2.1 Python Packages for Science and Numerical Com-
putations

Some important Python Packages for Science and Numerical Computations are:

• NumPy - NumPy is the fundamental package for scientific computing
with Python [10]

• SciPy - SciPy is a free and open-source Python library used for scientific
computing and technical computing. SciPy contains modules for optimiza-
tion, linear algebra, integration, interpolation, special functions, FFT, sig-
nal and image processing, ODE solvers and other tasks common in science
and engineering. [10]

• Matplotlib - Matplotlib is a Python 2D plotting library. [11]

• Pandas - Pandas Python Data Analysis Library [12]

These packages need to be downloaded and installed separately, or you choose
to use, e.g., a distribution package like Anaconda, where you typically get the
packages you need for scientific computing. With Anaconda you typically get
the same features as with MATLAB.

3.3 Anaconda

Anaconda is a distribution package, where you get Python compiler, Python
packages and the Spyder editor, all in one package.

Anaconda includes Python, the Jupyter Notebook, and other commonly used
packages for scientific computing and data science.

30



They offer a free version (Anaconda Distribution) and a paid version (Enter-
prise) Anaconda is available for Windows, macOS, and Linux

Web:
https://www.anaconda.com

Wikipedia:
https://en.wikipedia.org/wiki/Anaconda(Pythondistribution)

Spyder and the Python packages (NumPy, SciPy, Matplotlib, ...) mention above
+++ are included in the Anaconda Distribution.

3.4 Python Editors

An Editor is a program where you create your code (and where you can run
and test it). Most Editors have also features for Debugging. For simple Python
programs you can use the IDLE Editor, but for more advanced programs a bet-
ter editor is recommended.

Examples of Python Editors:

• Python IDLE

• Visual Studio Code

• Spyder

• Visual Studio

• PyCharm

• Wing Python IDE

• Jupyter Notebook

These editors are shortly described below and in more detail later in this text-
book.

Which editor you should use depends on your background, what kind of code
editors you have used previously, your programming skills, what your are going
to develop in Python, etc.

3.4.1 Python IDLE

The programming language is maintained and available from (Python Software
Foundation): https://www.python.org Here you can download the basic Python
features in one package, which includes the Python programming language in-
terpreter, and a basic code editor, or an integrated development environment,
called IDLE. See Figure 3.1

Web:
https://www.python.org

31



3.4.2 Visual Studio Code

Visual Studio Code is a source code editor developed by Microsoft for Windows,
Linux and macOS.

Web:
https://code.visualstudio.com

Resources: Getting Started with Python in Visual Studio Code

3.4.3 Spyder

Spyder is an open source cross-platform integrated development environment
(IDE) for scientific programming in the Python language.

Web:
https://www.spyder-ide.org

Wikipedia:
https://en.wikipedia.org/wiki/Spyder(software)

Spyder is included in the Anaconda Distribution.

3.4.4 Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from
Microsoft. It is used to develop computer programs, as well as websites, web
apps, web services and mobile apps. The deafult (main) programming language
in Visual studio is C, but many other programming languages are supported.

Visual studio is available for Windows and macOS.

Visual Studio (from 2017), has integrated support for Python, it is called
”Python Support in Visual Studio”.

Web:
https://visualstudio.microsoft.com

Wikipedia:
https://en.wikipedia.org/wiki/MicrosoftV isualStudio

3.4.5 PyCharm

PyCharm is cross-platform, with Windows, macOS and Linux versions. The
Community Edition is free to use, while the Professional Edition (paid version)
has some extra features.

32



Web:
https://www.jetbrains.com/pycharm/

3.4.6 Wing Python IDE

The Wing Python IDE family of integrated development environments (IDEs)
from Wingware were created specifically for the Python programming language.

3 different version of Wing exists [13]:

• Wing 101 – a very simplified free version, for teaching beginning pro-
grammers

• Wing Personal – free version that omits some features, for students and
hobbyists

• Wing Pro – a full-featured commercial (paid) version, for professional
programmers

3.4.7 Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you to cre-
ate and share documents that contain live code, equations, visualizations and
text.

Web:
http://jupyter.org

Wikipedia:
https://en.wikipedia.org/wiki/ProjectJupyter

3.5 Resources

Here are some useful Python resources:

• The official Python Tutorial
- https://docs.python.org/3.7/tutorial/index.html

• The official Python Documentation
- https://docs.python.org/3.7/index.html

• Python Tutorial (w3schools.com) [14]
- https://www.w3schools.com/python/

3.6 Installing Python

The Python programming language is maintained and available from (Python
Software Foundation):

33



https://www.python.org

Here you can download the basic Python features in one package, which includes
the Python programming language interpreter, and a basic code editor, or an
integrated development environment, called IDLE. See Figure 3.1

For basic Python programming this is good enough.

For more advanced Python Programming you typically need a better Code Ed-
itor and additional Packages.

For the basic Python examples in the beginning, the basic Python software
from:
https://www.python.org is good enough.

I suggest you start with the basic Python software in order to learn the basics,
then you can upgrade to a better Editor, install addition Python packages (either
manually or or install Anaconda where ”everything” is included).

3.6.1 Python Windows 10 Store App

Python 3.7 is also available in the Microsoft Store for Windows 10.

The Microsoft Store version of Python 3.7 is a simplified installer for running
scripts and packages.

Microsoft Store version of Python 3.7 is very basic but it’s good enough to run
the simple scripts.

Python 3.7 Microsoft Store edition will receive all updates automatically when
they are released and no manual action is required from your end.

In order to install the Microsoft Store version of Python just open Microsoft
Store in Windows 10 and search for Python.

3.6.2 Installing Anaconda

The Spyder Code Editor and the Python packages (such as NumPy, SciPy, mat-
plotlib, etc) are included in the Anaconda Distribution.

Download and install from:
https://www.anaconda.com

3.6.3 Installing Visual Studio Code

Visual Studio Code code is a simple and easy to use editor that can be used for
many different programming languages.

34



Download and install from:
https://code.visualstudio.com

Getting Started with Python in Visual Studio Code:
https://code.visualstudio.com/docs/python/python-tutorial

35



Chapter 4

Start using Python

In this chapter we will start to use Python in some simple examples.

4.1 Python IDE

The basic code editor, or an integrated development environment, called IDLE.
See Figure 4.1.

Other Python Editors will be discussed more in detail later. For now you can
use the basic Python IDE (IDLE) or Spyder if you have installed the Anaconda
distribution package.

Figure 4.1: Python Shell / Python IDLE Editor

4.2 My first Python program

We will start using Python and create some code examples.

36



Example 4.2.1. Plotting in Python

Lets open your Python Editor and type the following:

1 pr in t ( ”He l lo World ! ” )

Listing 4.1: Hello World Python Example

[End of Example]

An extremely useful command is help(), which enters a help functionality to
explore all the stuff python lets you do, right from the interpreter. Press q to
close the help window and return to the Python prompt.

You can use Python in different ways, either in ”interactive” mode or in ”Script-
ing” mode.

The python program that you have installed will by default act as something
called an interpreter. An interpreter takes text commands and runs them as
you enter them - very handy for trying things out.

Yo can run Python interactively in different ways either using the Console which
is part of the operating system or the Python IDLE and the Python Shell which
is part of the basic Python installation from https://www.python.org.

4.3 Python Shell

In interactive Mode you use the Python Shell as seen in Figure 4.1.

Here you type one and one command at a time after the ”>>>” sign in the
Python Shell.

1 >>> pr in t ( ”He l lo World ! ” )

4.4 Running Python from the Console

A console (or ”terminal”, or ‘command prompt’) is a textual way to interact
with your OS (Operating System).

The python program that you have installed will by default act as something
called an interpreter. An interpreter takes text commands and runs them as
you enter them - very handy for trying things out.

Below we see how we can run Python from the Console which is part of the OS.

37



4.4.1 Opening the Console on macOS

The standard console on macOS is a program called Terminal. Open Terminal
by navigating to Applications, then Utilities, then double-click the Terminal pro-
gram. You can also easily search for it in the system search tool in the top right.

The command line Terminal is a tool for interacting with your computer. A
window will open with a command line prompt message, something like this:

Last l o g i n : Tue Dec 11 08 : 33 : 51 on conso l e
computername : ˜ username

Just type python at your console, hit Enter, and you should enter Python’s
Interpreter.

1 Last l o g i n : Tue Dec 11 12 : 34 : 16 on ttys000
2 Hans−Petter−Work−MacBook−Air : ˜ hansha$ python
3 Python 3 . 6 . 5 |Anaconda , Inc . | ( de fau l t , Apr 26 2018 , 0 8 : 4 2 : 3 7 )
4 [GCC 4 . 2 . 1 Compatible Clang 4 . 0 . 1 ( tags /RELEASE 401/ f i n a l ) ] on

darwin
5 Type ” help ” , ” copyr ight ” , ” c r e d i t s ” or ” l i c e n s e ” f o r more

in fo rmat ion .
6 >>>

The prompt >>> on the last line indicates that you are now in an interactive
Python interpeter session, also called the “Python shell”. This is different from
the normal terminal command prompt!

You can now enter some code for python to run. Try:

>>> pr in t (” He l lo World”)

Se also Figure 4.2.

Figure 4.2: Console macOS

Try other Python commands, e.g.:

1 >>> a = 5
2 >>> b = 2
3 >>> x = 5
4 >>> y = 3∗a + b
5 >>> y

38



4.4.2 Opening the Console on Windows

Window’s console is called the Command Prompt, named cmd. An easy way to
get to it is by using the key combination Windows+R (Windows meaning the
windows logo button), which should open a Run dialog. Then type cmd and
hit Enter or click Ok.

You can also search for it from the start menu.

It should look like:

C:\ Users \myusername>

Just type python in the Command Prompt, hit Enter, and you should enter
Python’s Interpreter. See Figure 4.3.

Figure 4.3: Command Prompt Windows

If you get an error message like this:

’python’ is not recognized as an internal or external command, operable program
or batch file.
Then you need to add Python to your path. See instructions below.

Note! This is also an option during the setup. While installing you can se-
lect ”Add Python.exe to path”. This option is by default set to ”Off”. To get
that option you need to select ”Customize”, not using the ”Default” installation.

4.4.3 Add Python to Path

In the Windows menu, search for “advanced system settings” and select View
advanced system settings.

In the window that appears, click Environment Variables. . . near the bottom
right. See Figure 4.4.

39



Figure 4.4: Windows System Properties

In the next window, find and select the user variable named Path and click
Edit. . . to change its value. See Figure 4.5.

Select ”New” and add the path where ”python.exe” is located. See Figure 4.6.

The Default Location is:

C:\ Users \ user \AppData\Local \Programs\Python\Python37−32\

Click Save and open the Command Prompt once more and enter ”python” to
verify it works. See Figure 4.3.

40



Figure 4.5: Windows System Properties

4.5 Scripting Mode

In ”Scripting” mode you can write a Python Program with multiple Python
commands and then save it as a file (.py).

4.5.1 Run Python Scripts from the Python IDLE

From the Python Shell you select File → New File, or you can open an existing
Pytho program or Python Script by selecting File → Open...

Lets create a new Script and type in the following:

1 pr in t ( ”He l lo ” )
2 pr in t ( ”World” )
3 pr in t ( ”How are you?” )

In Figure 4.7 we see how this is done. As you see we can enter many Python
commands that together makes a Python program or Python script.
From the Python Shell you select Run→ Run Module or hit F5 in order to run
or execute the Python Script. See Figure 4.8.

41



Figure 4.6: Windows System Properties

The IDLE editor is very basic, for more complicated tasks you typically may
prefer to use another editor like Spyder, Visual Studio Code, etc.

4.5.2 Run Python Scripts from the Console (Terminal)
macOS

From the Console (Terminal) on macOS:

1 $ cd /Users /username/Downloads
2 $ python he l l owor ld . py

Note! Make sure you are at your system command prompt, which will have $
or > at the end, not in Python mode (which has >>> instead)!

See also Figure 4.9.
Then it responds with:

1 Hel lo
2 World
3 How are you?

42



Figure 4.7: Python Script

4.5.3 Run Python Scripts from the Command Prompt in
Windows

From Command Prompt in Window:

1 > cd /
2 > cd Temp
3 > python he l l owor ld . py

Note! Make sure you are at your system command prompt, which will have >
at the end, not in Python mode (which has >>> instead)!

See also Figure 4.10.
Then it responds with:

1 Hel lo
2 World
3 How are you?

4.5.4 Run Python Scripts from Spyder

If you have installed the Anaconda distribution package you can use the Spyder
editor. See 4.11.

In the Spyder editor we have the Script Editor to the left and the interactive
Python Shell or the Console window to the right. See See 4.11.

43



Figure 4.8: Running a Python Script

Figure 4.9: Running Python Scripts from Console window on macOS

Figure 4.10: Running Python Scripts from Console window on macOS

44



Figure 4.11: Running a Python Script in Spyder

45



Chapter 5

Basic Python Programming

5.1 Basic Python Program

We will start using Python and create some code examples.

We use the basic IDLE editor (or another Python Editor)

Example 5.1.1. Hello World Example

Lets open your Python Editor and type the following:

1 pr in t ( ”He l lo World ! ” )

Listing 5.1: Hello World Python Example

[End of Example]

5.1.1 Get Help

An extremely useful command is help(), which enters a help functionality to
explore all the stuff python lets you do, right from the interpreter.

Press q to close the help window and return to the Python prompt.

5.2 Variables

Variables are defined with the assignment operator, “=”. Python is dynamically
typed, meaning that variables can be assigned without declaring their type, and
that their type can change. Values can come from constants, from computation
involving values of other variables, or from the output of a function.

46



Example 5.2.1. Creating and using Variables in Python

We use the basic IDLE (or another Python Editor) and type the following:

1 >>> x = 3
2 >>> x
3 3

Listing 5.2: Using Variables in Python

Here we define a variable and sets the value equal to 3 and then print the result
to the screen.

[End of Example]

You can write one command by time in the IDLE. If you quit IDLE the variables
and data are lost. Therefore, if you want to write a somewhat longer program,
you are better off using a text editor to prepare the input for the interpreter
and running it with that file as input instead. This is known as creating a script.

Python scripts or programs are save as a text file with the extension .py

Example 5.2.2. Calculations in Python

We can use variables in a calculation like this:

1 x = 3
2 y = 3∗x
3 pr in t ( y )

Listing 5.3: Using and Printing Variables in Python

We can implement the formula y = ax+ b like this:

1 a = 2
2 b = 5
3 x = 3
4

5 y = a∗x + b
6

7 pr in t ( y )

Listing 5.4: Calculations in Python

As seen in the examples, you can use the print() command in order to show the
values on the screen.

[End of Example]

47



A variable can have a short name (like x and y) or a more descriptive name
(sum, amount, etc).

You don need to define the variables before you use them (like you need to to
in, e.g., C/C++/C).

Figure 5.1 show these examples using the basic IDLE editor.

Figure 5.1: Basic Python

Here are some basic rules for Python variables:

• A variable name must start with a letter or the underscore character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters (A-z, 0-9) and
underscores

• Variable names are case-sensitive, e.g., amount, Amount and AMOUNT
are three different variables.

5.2.1 Numbers

There are three numeric types in Python:

• int

• float

• complex

48



Variables of numeric types are created when you assign a value to them, so in
normal coding you don’t need to bother.

Example 5.2.3. Numeric Types in Python

1 x = 1 # in t
2 y = 2 .8 # f l o a t
3 z = 3 + 2 j # complex

Listing 5.5: Numeric Types in Python

This means you just assign values to a variable without worrying about what
kind of data type it is.

1 pr in t ( type (x ) )
2 pr in t ( type (y ) )
3 pr in t ( type ( z ) )

Listing 5.6: Check Data Types in Python

If you use the Spyder Editor, you can see the data types that a variable has
using the Variable Explorer (Figure 5.2):

Figure 5.2: Variable Editor in Spyder

[End of Example]

5.2.2 Strings

Strings in Python are surrounded by either single quotation marks, or double
quotation marks. ’Hello’ is the same as ”Hello”.
Strings can be output to screen using the print function. For example: print(”Hello”).

Example 5.2.4. Using Strings in Python

Below we see examples of using strings in Python:

1 a = ”He l lo World ! ”
2

3 pr in t ( a )
4

5 pr in t ( a [ 1 ] )
6 pr in t ( a [ 2 : 5 ] )
7 pr in t ( l en ( a ) )
8 pr in t ( a . lower ( ) )

49



9 pr in t ( a . upper ( ) )
10 pr in t ( a . r ep l a c e ( ”H” , ”J” ) )
11 pr in t ( a . s p l i t ( ” ” ) )

Listing 5.7: Strings in Python

As you see in the example, there are many built-in functions form manipulating
strings in Python. The Example shows only a few of them.

Strings in Python are arrays of bytes, and we can use index to get a specific
character within the string as shown in the example code.

[End of Example]

5.2.3 String Input

Python allows for command line input.

That means we are able to ask the user for input.

Example 5.2.5. String Input in Python

The following example asks for the user’s name, then, by using the input()
method, the program prints the name to the screen:

1 pr in t ( ”Enter your name : ” )
2 x = input ( )
3 pr in t ( ”Hel lo , ” + x)

Listing 5.8: String Input

[End of Example]

5.3 Built-in Functions

Python consists of lots of built-in functions. Some examples are the print func-
tion that we already have used (perhaps without noticing it is actually a Built-in
function).

Python also consists of different Modules, Libraries or Packages. These Mod-
ules, Libraries or Packages consists of lots of predefined functions for different
topics or areas, such as mathematics, plotting, handling database systems, etc.
See Section 5.4 for more information and details regarding this.

In another chapter we will learn to create our own functions from scratch.

50



5.4 Python Standard Library

Python allows you to split your program into modules that can be reused in
other Python programs. It comes with a large collection of standard modules
that you can use as the basis of your programs.
The Python Standard Library consists of different modules for handling file
I/O, basic mathematics, etc. You don’t need to install these separately, but you
need to important them when you want to use some of these modules or some
of the functions within these modules.

The math module has all the basic math functions you need, such as: Trigono-
metric functions: sin(x), cos(x), etc. Logarithmic functions: log(), log10(), etc.
Constants like pi, e, inf, nan, etc.

Example 5.4.1. Using the math module

We create some basic examples how to use a Library, a Package or a Module:

If we need only the sin() function, we can do like this:

1 from math import s i n
2

3 x = 3.14
4 y = s i n (x )
5

6 pr in t ( y )

If we need a few functions, we can do like this:

1 from math import s in , cos
2

3 x = 3.14
4 y = s i n (x )
5 pr in t ( y )
6

7 y = cos (x )
8 pr in t ( y )

If we need many functions, we can do like this:

1 from math import ∗
2

3 x = 3.14
4 y = s i n (x )
5 pr in t ( y )
6

7 y = cos (x )
8 pr in t ( y )

We can also use this alternative:

1 import math
2

3 x = 3.14
4 y = math . s i n (x )
5

6 pr in t ( y )

51



We can also write it like this:

1 import math as mt
2

3 x = 3.14
4 y = mt . s i n ( x )
5

6 pr in t ( y )

[End of Example]

There are advantages and disadvantages with the different approaches. In your
program you may need to use functions from many different modules or pack-
ages. If you import the whole module instead of just the function(s) you need
you use more of the computer memory.

Very often we also need to import and use multiple libraries where the different
libraries have some functions with the same name but different use.

Other useful modules in the Python Standard Library are statistics (where
you have functions like mean(), stdev(), etc.)

For more information about the functions in the Python Standard Library,
see:
https://docs.python.org/3/library/index.html

5.5 Using Python Libraries, Packages and Mod-
ules

Rather than having all of its functionality built into its core, Python was de-
signed to be highly extensible. This approach has advantages and disadvantages.
A disadvantage is that you need to install these packages separately and then
later import these modules in your code.

Some important packages are:

• NumPy - NumPy is the fundamental package for scientific computing
with Python

• SciPy - SciPy is a free and open-source Python library used for scientific
computing and technical computing. SciPy contains modules for optimiza-
tion, linear algebra, integration, interpolation, special functions, FFT, sig-
nal and image processing, ODE solvers and other tasks common in science
and engineering.

• Matplotlib - Matplotlib is a Python 2D plotting library

52



Lots of other packages exists, depending on what you are going to solve.

These packages need to be downloaded and installed separately, or you choose
to use, e.g., a distribution package like Anaconda.

Here you find an overview of the NumPy library:
https://www.numpy.org

Here you find an overview of the SciPy library:
https://www.scipy.org

Here you find an overview of the Matplotlib library:
https://matplotlib.org

You will learn the basics features in all these libraries. We will use all of the in
different examples and exercises throughout this textbook.

Example 5.5.1. Using libraries

In this example we use the NumPy library:

1 import numpy as np
2

3 x = 3
4

5 y = np . s i n ( x )
6

7 pr in t ( y )

In this example we use both the math module in the Python Standard Library
and the NumPy library:

1 import math as mt
2 import numpy as np
3

4 x = 3
5

6 y = mt . s i n ( x )
7

8 pr in t ( y )
9

10

11 y = np . s i n ( x )
12

13 pr in t ( y )

Note! As seen in this example we use a function called sin() which exists both
in the math module in the Python Standard Library and the NumPy library.
In this case they give the same results. In this case the following code is not
recommended:

1 from math import ∗
2 from numpy import ∗
3

4 x = 3
5

53



6 y = s i n (x )
7

8 pr in t ( y )
9

10

11 y = s i n (x )
12

13 pr in t ( y )

In this case it works, but assume you have 2 different functions with the same
name that have different meaning in 2 different libraries.

[End of Example]

5.5.1 Python Packages

In addition to the Python Standard Library, there is a growing collection of sev-
eral thousand components (from individual programs and modules to packages
and entire application development frameworks), available from the Python
Package Index.

Python Package Index (PYPI):
https://pypi.org

Here you can download and install individual Python packages.
An easy alternative is the Anaconda Distribution, where many of the most used
Python packages are included.

Anaconda:
https://www.anaconda.com/distribution/

5.6 Plotting in Python

Typically you need to create some plots or charts. In order to make plots or
charts in Python you will need an external library. The most used library is
Matplotlib.

Matplotlib is a Python 2D plotting library

Here you find an overview of the Matplotlib library:
https://matplotlib.org

If you are familiar with MATLAB and basic plotting in MATLAB, using the
Matplotlib is very similar.

The main difference from MATLAB is that you need to import the library,
either the whole library or one or more functions.
For simplicity we import the whole library like this:

1 import matp lo t l i b . pyplot as p l t

54



Plotting functions that you will use a lot:

• plot()

• title()

• xlabel()

• ylabel()

• axis()

• grid()

• subplot()

• legend()

• show()

Lets create some basic plotting examples using the Matplotlib library:

Example 5.6.1. Plotting in Python

In this example we have two arrays with data. We want to plot x vs. y. We
can assume x is a time series and y is the corresponding temperature in degrees
Celsius.

1 import matp lo t l i b . pyplot as p l t
2

3 x = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]
4

5 y = [ 5 , 2 ,4 , 4 , 8 , 7 , 4 , 8 , 10 , 9 ]
6

7 p l t . p l o t (x , y )
8 p l t . x l ab e l ( ’Time ( s ) ’ )
9 p l t . y l ab e l ( ’ Temperature (degC) ’ )

10 p l t . show ( )

We get the plot as shown in Figure 5.3.

We can also write like this:

1 from matp lo t l i b . pyplot import ∗
2

3 x = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]
4 y = [ 5 , 2 ,4 , 4 , 8 , 7 , 4 , 8 , 10 , 9 ]
5

6 p lo t (x , y )
7 x l ab e l ( ’Time ( s ) ’ )
8 y l ab e l ( ’ Temperature (degC) ’ )
9 show ( )

This makes the code simpler to read. one problem with this approach appears
assuming we import and use multiple libraries and the different libraries have
some functions with the same name but different use.

55



Figure 5.3: Plotting in Python

[End of Example]

We have used 4 basic plotting function in the Matplotlib library:

• plot()

• xlabel()

• ylabel()

• show()

Example 5.6.2. Plotting a Sine Curve

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 x = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ]
5

6 y = np . s i n ( x )
7

8 p l t . p l o t (x , y )
9 p l t . x l ab e l ( ’ x ’ )

10 p l t . y l ab e l ( ’ y ’ )
11 p l t . show ( )

This gives the following plot (see Figure 5.4):

A better solution will then be:

56



Figure 5.4: Plotting a Sine function in Python

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 x s t a r t = 0
5 xstop = 2∗np . p i
6 increment = 0 .1
7

8 x = np . arange ( xs tar t , xstop , increment )
9

10 y = np . s i n ( x )
11

12 p l t . p l o t (x , y )
13 p l t . x l ab e l ( ’ x ’ )
14 p l t . y l ab e l ( ’ y ’ )
15 p l t . show ( )

This gives the following plot (see Figure 5.5):
If you want grids you can use the grid() function.

[End of Example]

5.6.1 Subplots

The subplot command enables you to display multiple plots in the same window.
Typing ”subplot(m,n,p)” partitions the figure window into an m-by-n matrix
of small subplots and selects the subplot for the current plot. The plots are
numbered along the first row of the figure window, then the second row, and so
on. See Figure 5.6.

Example 5.6.3. Creating Subplots

57



Figure 5.5: Plotting a Sine function in Python - Better Implementation

We will create and plot sin() and cos() in 2 different subplots.

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 x s t a r t = 0
5 xstop = 2∗np . p i
6 increment = 0 .1
7

8 x = np . arange ( xs tar t , xstop , increment )
9

10 y = np . s i n ( x )
11

12 z = np . cos ( x )
13

14

15 p l t . subp lot ( 2 , 1 , 1 )
16 p l t . p l o t (x , y , ’ g ’ )
17 p l t . t i t l e ( ’ s i n ’ )
18 p l t . x l ab e l ( ’ x ’ )
19 p l t . y l ab e l ( ’ s i n ( x ) ’ )
20 p l t . g r i d ( )
21 p l t . show ( )
22

23

24 p l t . subp lot ( 2 , 1 , 2 )
25 p l t . p l o t (x , z , ’ r ’ )
26 p l t . t i t l e ( ’ cos ’ )
27 p l t . x l ab e l ( ’ x ’ )
28 p l t . y l ab e l ( ’ cos ( x ) ’ )
29 p l t . g r i d ( )
30 p l t . show ( )

[End of Example]

58



Figure 5.6: Creating Subplots in Python

5.6.2 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 5.6.1. Create sin(x) and cos(x) in 2 different plots

Create sin(x) and cos(x) in 2 different plots.

You should use all the Plotting functions listed below in your code:

• plot()

• title()

• xlabel()

• ylabel()

• axis()

• grid()

• legend()

• show()

[End of Exercise]

59



Part III

Python Programming

60



Chapter 6

Python Programming

We have been through the basics in Python, such as variables, using some basic
built-in functions, basic plotting, etc.

You may come far only using these thins, but to create real applications, you
need to know about and use features like:

• If ... Else

• For Loops

• While Loops

• Arrays ...

If you are familiar with one or more other programming language, these fea-
tures should be familiar and known to you. All programming languages have
these features built-in, but the syntax is slightly different from one language to
another.

6.1 If ... Else

An ”if statement” is written by using the if keyword.

Here are some Examples how you use a If sentences in Python:

Example 6.1.1. Using If ... Else in Python

Using If :

1 a = 5
2 b = 8
3

4 i f a > b :
5 pr in t ( ”a i s g r e a t e r than b” )
6

7 i f b > a :
8 pr in t ( ”b i s g r e a t e r than a” )
9

10 i f a == b :

61



11 pr in t ( ”a i s equal to b” )

Listing 6.1: If

Try to change the values for a and b.

Using If - Else:

1 a = 5
2 b = 8
3

4 i f a > b :
5 pr in t ( ”a i s g r e a t e r than b” )
6 e l s e :
7 pr in t ( ”b i s g r e a t e r than a or a and b are equal ” )

Listing 6.2: If - Else

Using Elif :

1 a = 5
2 b = 8
3

4 i f a > b :
5 pr in t ( ”a i s g r e a t e r than b” )
6 e l i f b > a :
7 pr in t ( ”b i s g r e a t e r than a” )
8 e l i f a == b :
9 pr in t ( ”a i s equal to b” )

Listing 6.3: Elif

Note! Python uses ”elif” not ”elseif” like many other programming languages
do.

[End of Example]

6.2 Arrays

An array is a special variable, which can hold more than one value at a time.

Here are some Examples how you can create and use Arrays in Python:

Example 6.2.1. Arrays in Python

1 data = [ 1 . 6 , 3 . 4 , 5 . 5 , 9 . 4 ]
2

3 N = len ( data )
4

5 pr in t (N)
6

7 pr in t ( data [ 2 ] )
8

9 data [ 2 ] = 7 .3
10

11 pr in t ( data [ 2 ] )

62



12

13

14 f o r x in data :
15 pr in t ( x )
16

17

18 data . append ( 1 1 . 4 )
19

20

21 N = len ( data )
22

23 pr in t (N)
24

25

26 f o r x in data :
27 pr in t ( x )

Listing 6.4: Using Arrays in Python

You define an array like this:

1 data = [ 1 . 6 , 3 . 4 , 5 . 5 , 9 . 4 ]

You can also use text like this:

1 c a r l i s t = [ ”Volvo” , ”Tes la ” , ”Ford” ]

You can use Arrays in Loops like this:

1 f o r x in data :
2 pr in t ( x )

You can return the number of elements in the array like this:

1 N = len ( data )

You can get a specific value inside the array like this:

1 index = 2
2 x = car s [ index ]

You can use the append() method to add an element to an array:

1 data . append ( 1 1 . 4 )

[End of Example]

You have many built in methods you can use in combination with arrays, like
sort(), clear(), copy(), count(), insert(), remove(), etc.

You should look into test all these methods.

63



6.3 For Loops

A For loop is used for iterating over a sequence. I guess all your programs will
use one or more For loops. So if you have not used For loops before, make sure
to learn it now.

Below you see a basic example how you can use a For loop in Python:

1 f o r i in range (1 , 10) :
2 pr in t ( i )

The For loop is probably one of the most useful feature in Python (or in any
kind of programming language). Below you will see different examples how you
can use a For loop in Python.

Example 6.3.1. Using For Loops in Python

1 data = [ 1 . 6 , 3 . 4 , 5 . 5 , 9 . 4 ]
2

3 f o r x in data :
4 pr in t ( x )
5

6

7 c a r l i s t = [ ”Volvo” , ”Tes la ” , ”Ford” ]
8

9 f o r car in c a r l i s t :
10 pr in t ( car )

Listing 6.5: Using For Loops in Python

The range() function is handy to use in For Loops:

1 N = 10
2

3 f o r x in range (N) :
4 pr in t ( x )

The range() function returns a sequence of numbers, starting from 0 by default,
and increments by 1 (by default), and ends at a specified number.

You can also use the range() function like this:

1 s t a r t = 4
2 stop= 12 #but not i n c l ud ing
3

4 f o r x in range ( s ta r t , stop ) :
5 pr in t ( x )

Finally, you can also use the range() function like this:

1 s t a r t = 4
2 stop = 12 #but not i n c l ud ing
3 s tep = 2
4

5 f o r x in range ( s ta r t , stop , s tep ) :
6 pr in t ( x )

64



You should try all these examples in order to learn the basic structure of a For
loop.

[End of Example]

Example 6.3.2. Using For Loops for Summation of Data

You typically want to use a For loop for find the sum of a given data set.

1 data = [ 1 , 5 , 6 , 3 , 12 , 3 ]
2

3 sum = 0
4

5 #Find the Sum of a l l the numbers
6 f o r x in data :
7 sum = sum + x
8

9 pr in t (sum)
10

11 #Find the Mean or Average o f a l l the numbers
12

13 N = len ( data )
14

15 mean = sum/N
16

17 pr in t (mean)

This gives the following results:

1 30
2 5 .0

[End of Example]

Example 6.3.3. Implementing Fibonacci Numbers Using a For Loop in Python

Fibonacci numbers are used in the analysis of financial markets, in strategies
such as Fibonacci retracement, and are used in computer algorithms such as the
Fibonacci search technique and the Fibonacci heap data structure.
They also appear in biological settings, such as branching in trees, arrangement
of leaves on a stem, the fruitlets of a pineapple, the flowering of artichoke, an
uncurling fern and the arrangement of a pine cone.

In mathematics, Fibonacci numbers are the numbers in the following sequence:
0, 1, 1, 2 ,3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

By definition, the first two Fibonacci numbers are 0 and 1, and each subsequent
number is the sum of the previous two.

Some sources omit the initial 0, instead beginning the sequence with two 1s.

65



In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the
recurrence relation

fn = fn−1 + fn−2 (6.1)

with seed values:

f0 = 0, f1 = 1

We will write a Python script that calculates the N first Fibonacci numbers.
The Python Script becomes like this:

1 N = 10
2

3 f i b 1 = 0
4 f i b 2 = 1
5

6 pr in t ( f i b 1 )
7 pr in t ( f i b 2 )
8

9 f o r k in range (N−2) :
10 f i b n e x t = f i b 2 +f i b 1
11 f i b 1 = f i b 2
12 f i b 2 = f i b n e x t
13 pr in t ( f i b n e x t )

Listing 6.6: Fibonacci Numbers Using a For Loop in Python

Alternative solution:

1 N = 10
2

3 f i b = [ 0 , 1 ]
4

5

6 f o r k in range (N−2) :
7 f i b n e x t = f i b [ k+1] +f i b [ k ]
8 f i b . append ( f i b n e x t )
9

10 pr in t ( f i b )

Listing 6.7: Fibonacci Numbers Using a For Loop in Python - Alt2

Another alternative solution:

1 N = 10
2

3 f i b = [ ]
4

5 f o r k in range (N) :
6 f i b . append (0 )
7

8 f i b [ 0 ] = 0
9 f i b [ 1 ] = 1

10

66



11 f o r k in range (N−2) :
12 f i b [ k+2] = f i b [ k+1] +f i b [ k ]
13

14

15 pr in t ( f i b )

Listing 6.8: Fibonacci Numbers Using a For Loop in Python - Alt3

Another alternative solution:

1 import numpy as np
2

3

4 N = 10
5

6 f i b = np . z e r o s (N)
7

8 f i b [ 0 ] = 0
9 f i b [ 1 ] = 1

10

11 f o r k in range (N−2) :
12 f i b [ k+2] = f i b [ k+1] +f i b [ k ]
13

14

15 pr in t ( f i b )

Listing 6.9: Fibonacci Numbers Using a For Loop in Python - Alt4

[End of Example]

6.3.1 Nested For Loops

In Python and other programming languages you can use one loop inside an-
other loop.

Syntax for nested For loops in Python:

1 f o r i t e r a t i n g v a r in sequence :
2 f o r i t e r a t i n g v a r in sequence :
3 statements ( s )
4 statements ( s )

Simple example:

1 f o r i in range (1 , 10) :
2 f o r k in range (1 , 10) :
3 pr in t ( i , k )

Exercise 6.3.1. Prime Numbers

The first 25 prime numbers (all the prime numbers less than 100) are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97

67



By definition a prime number has both 1 and itself as a divisor. If it has any
other divisor, it cannot be prime.

A natural number (1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a prime) if
it is greater than 1 and cannot be written as a product of two natural numbers
that are both smaller than it.

Create a Python Script where you find all prime numbers between 1 and 200.

Tip! I guess this can be done in many different ways, but one way is to use 2
nested For Loops.

[End of Exercise]

6.4 While Loops

The while loop repeats a group of statements an indefinite number of times
under control of a logical condition.

Example 6.4.1. Using While Loops in Python

1 m = 8
2

3 whi le m > 2 :
4 pr in t (m)
5 m = m − 1

Listing 6.10: Using While Loops in Python

[End of Example]

6.5 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 6.5.1. Plot of Dynamic System

Given the autonomous system:
ẋ = ax (6.2)

Where:

a = − 1

T

68



where T is the time constant.

The solution for the differential equation is:

x(t) = eatx0 (6.3)

Set T=5 and the initial condition x(0)=1.

Create a Script in Python (.py file) where you plot the solution x(t) in the time
interval:

0 ≤ t ≤ 25

Add Grid, and proper Title and Axis Labels to the plot.

[End of Exercise]

69



Chapter 7

Creating Functions in
Python

7.1 Introduction

A function is a block of code which only runs when it is called. You can pass
data, known as parameters, into a function. A function can return data as a
result.

Previously we have been using many of the built-in functions in Python

If you are familiar with one or more other programming language, creating and
using functions should be familiar and known to you. All programming lan-
guages has the possibility to create functions, but the syntax is slightly different
from one language to another.

Some programming languages uses the term Method instead of a Function.
Functions and Methods behave in the same manner, but you could say that
Methods are functions that belongs to a Class. We will learn more about Classes
in Chapter 8.

Scripts vs. Functions

It is important to know the difference between a Script and a Function.

Scripts:

• A collection of commands that you would execute in the Editor

• Used for automating repetitive tasks

Functions:

• Operate on information (inputs) fed into them and return outputs

• Have a separate workspace and internal variables that is only valid inside
the function

70



• Your own user-defined functions work the same way as the built-in func-
tions you use all the time, such as plot(), rand(), mean(), std(), etc.

Python have lots of built-in functions, but very often we need to create our own
functions (we could refer to these functions as user-defined functions)
In Python a function is defined using the def keyword:

1 de f FunctionName :
2 <statement−1>
3 .
4 .
5 <statement−N>
6 r e turn . . .

Example 7.1.1. Basic Function

Below you see a simple function created in Python:

1 de f add (x , y ) :
2

3 r e turn x + y

Listing 7.1: Basic Python Function

The function adds 2 numbers. The name of the function is add, and it returns
the answer using the return statement.

The statement return [expression] exits a function, optionally passing back an
expression to the caller. A return statement with no arguments is the same as
return None.

Note that you need to use a colon ”:” at the end of line where you define the
function.

Note also the indention used.

1 de f add (x , y ) :

Here you see a Python script where we use the function:

1 de f add (x , y ) :
2

3 r e turn x + y
4

5

6 x = 2
7 y = 5
8

9 z = add (x , y )
10

11 pr in t ( z )

Listing 7.2: Creating and Using a Python Function

71



[End of Example]

Example 7.1.2. Create a Function in a separate File

We start by creating a separate Python File (myfunctions.py) for the function:

1 de f average (x , y ) :
2

3 r e turn (x + y) /2

Listing 7.3: Function calculating the Average

Next, we create a new Python File (e.g., testaverage.py) where we use the
function we created:

1 from myfunctions import average
2

3 a = 2
4 b = 3
5

6 c = average ( a , b)
7

8 pr in t ( c )

Listing 7.4: Test of Average function

[End of Example]

7.2 Functions with multiple return values

Typically we want to return more than one value from a function.

Example 7.2.1. Create a Function Function with multiple return values

Create the following example:

1 de f s t a t ( x ) :
2

3 totalsum = 0
4

5 #Find the Sum of a l l the numbers
6 f o r x in data :
7 totalsum = totalsum + x
8

9

10 #Find the Mean or Average o f a l l the numbers
11

12 N = len ( data )
13

14 mean = totalsum/N
15

16

17 r e turn totalsum , mean
18

19

20

72



21 data = [ 1 , 5 , 6 , 3 , 12 , 3 ]
22

23

24 totalsum , mean = s t a t ( data )
25

26 pr in t ( totalsum , mean)

Listing 7.5: Function with multiple return values

[End of Example]

7.3 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 7.3.1. Create Python Function

Create a function calcaverage that finds the average of two numbers.

[End of Exercise]

Exercise 7.3.2. Create Python functions for converting between radians and
degrees

Since most of the trigonometric functions require that the angle is expressed in
radians, we will create our own functions in order to convert between radians
and degrees.

It is quite easy to convert from radians to degrees or from degrees to radians.

We have that:

2π[radians] = 360[degrees] (7.1)

This gives:

d[degrees] = r[radians]× (
180

π
) (7.2)

and

r[radians] = d[degrees]× (
π

180
) (7.3)

Create two functions that convert from radians to degrees (r2d(x)) and from
degrees to radians (d2r(x)) respectively.

These functions should be saved in one Python file .py.

Test the functions to make sure that they work as expected.

73



[End of Exercise]

Exercise 7.3.3. Create a Function that Implementing Fibonacci Numbers

Fibonacci numbers are used in the analysis of financial markets, in strategies
such as Fibonacci retracement, and are used in computer algorithms such as the
Fibonacci search technique and the Fibonacci heap data structure.
They also appear in biological settings, such as branching in trees, arrangement
of leaves on a stem, the fruitlets of a pineapple, the flowering of artichoke, an
uncurling fern and the arrangement of a pine cone.

In mathematics, Fibonacci numbers are the numbers in the following sequence:
0, 1, 1, 2 ,3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

By definition, the first two Fibonacci numbers are 0 and 1, and each subsequent
number is the sum of the previous two.

Some sources omit the initial 0, instead beginning the sequence with two 1s.

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the
recurrence relation

fn = fn−1 + fn−2 (7.4)

with seed values:

f0 = 0, f1 = 1

Create a Function that Implementing the N first Fibonacci Numbers

[End of Exercise]

Exercise 7.3.4. Prime Numbers

The first 25 prime numbers (all the prime numbers less than 100) are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97

By definition a prime number has both 1 and itself as a divisor. If it has any
other divisor, it cannot be prime.

A natural number (1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a prime) if
it is greater than 1 and cannot be written as a product of two natural numbers
that are both smaller than it.

Tip! I guess this can be implemented in many different ways, but one way is to
use 2 nested For Loops.

74



Create a Python function where you check if a given number is a prime number
or not.

You can check the function in the Command Window like this:

1 number = 4
2 check i fp r ime (number )

Then Python respond with True or False.

[End of Exercise]

75



Chapter 8

Creating Classes in Python

8.1 Introduction

Python is an object oriented programming (OOP) language. Almost everything
in Python is an object, with its properties and methods.

The foundation for all object oriented programming (OOP) languages are Classes.

To create a class, use the keyword class:

1 c l a s s ClassName :
2 <statement−1>
3 .
4 .
5 .
6 <statement−N>

Example 8.1.1. Simple Class Example

We will create a simple Class in Python.

1 c l a s s Car :
2 model = ”Volvo”
3 c o l o r = ”Blue”
4

5

6 car = Car ( )
7

8

9 pr in t ( car . model )
10 pr in t ( car . c o l o r )

Listing 8.1: Simple Python Class

The results will be in this case:

1 Volvo
2 Blue

76



This example don’t illustrate the good things with classes so we will create some
more examples.

[End of Example]

Example 8.1.2. Python Class

Lets create the following Python Code:

1 c l a s s Car :
2 model = ””
3 c o l o r = ””
4

5 car = Car ( )
6

7 car . model = ”Volvo”
8 car . c o l o r = ”Blue”
9

10 pr in t ( car . c o l o r + ” ” + car . model )
11

12 car . model = ”Ford”
13 car . c o l o r = ”Green”
14

15 pr in t ( car . c o l o r + ” ” + car . model )

Listing 8.2: Python Class example

You should try these examples.

[End of Example]

8.2 The init () Function

In Python all classes have a built-in function called init (), which is always
executed when the class is being initiated.
In many other OOP languages we call this the Constructor.

Exercise 8.2.1. The init () Function

We will create a simple example where we use the init () function to illustrate
the principle.

We change our previous Car example like this:

1 c l a s s Car :
2 de f i n i t ( s e l f , model , c o l o r ) :
3 s e l f . model = model
4 s e l f . c o l o r = co l o r
5

6 car1 = Car ( ”Ford” , ”Green” )
7

8 pr in t ( car1 . model )
9 pr in t ( car1 . c o l o r )

10

11

77



12 car2 = Car ( ”Volvo” , ”Blue” )
13

14 pr in t ( car2 . model )
15 pr in t ( car2 . c o l o r )

Listing 8.3: Python Class Constructor Example

Lets extend the Class by defining a Function as well:

1 # Def in ing the Class Car
2 c l a s s Car :
3 de f i n i t ( s e l f , model , c o l o r ) :
4 s e l f . model = model
5 s e l f . c o l o r = co l o r
6

7 de f d i sp layCar ( s e l f ) :
8 pr in t ( s e l f . model )
9 pr in t ( s e l f . c o l o r )

10

11

12 # Lets s t a r t us ing the Class
13

14 car1 = Car ( ”Tesla ” , ”Red” )
15

16 car1 . d i sp layCar ( )
17

18

19 car2 = Car ( ”Ford” , ”Green” )
20

21 pr in t ( car2 . model )
22 pr in t ( car2 . c o l o r )
23

24

25 car3 = Car ( ”Volvo” , ”Blue” )
26

27 pr in t ( car3 . model )
28 pr in t ( car3 . c o l o r )
29

30 car3 . c o l o r=”Black”
31

32 car3 . d i sp layCar ( )

Listing 8.4: Python Class with Function

As you see from the code we have now defined a Class ”Car” that has 2 Class
variables called ”model” and ”color”, and in addition we have defined a Func-
tion (or Method) called ”displayCar()”.

Its normal to use the term ”Method” for Functions that are defined within a
Class.

You declare class methods like normal functions with the exception that the
first argument to each method is self.

To create instances of a class, you call the class using class name and pass in
whatever arguments its init () method accepts.

For example:

78



1 car1 = Car ( ”Tesla ” , ”Red” )

Listing 8.5: Import Class

[End of Example]

Exercise 8.2.2. Create the Class in a separate Python file

We start by creating the Class and then we save the code in ”Car.py”:

1 # Def in ing the Class Car
2 c l a s s Car :
3 de f i n i t ( s e l f , model , c o l o r ) :
4 s e l f . model = model
5 s e l f . c o l o r = co l o r
6

7 de f d i sp layCar ( s e l f ) :
8 pr in t ( s e l f . model )
9 pr in t ( s e l f . c o l o r )

Listing 8.6: Define Python Class in separate File

Then we create a Python Script (testCar.py) where we are using the Class:

1 # Importing the Car Class
2 from Car import Car
3

4 # Lets s t a r t us ing the Class
5

6 car1 = Car ( ”Tesla ” , ”Red” )
7

8 car1 . d i sp layCar ( )
9

10

11 car2 = Car ( ”Ford” , ”Green” )
12

13 pr in t ( car2 . model )
14 pr in t ( car2 . c o l o r )
15

16

17 car3 = Car ( ”Volvo” , ”Blue” )
18

19 pr in t ( car3 . model )
20 pr in t ( car3 . c o l o r )
21

22 car3 . c o l o r=”Black”
23

24 car3 . d i sp layCar ( )

Listing 8.7: Script that is using the Class

Notice the following line at the top:

1 from Car import Car

[language=Python]

[End of Example]

79



8.3 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 8.3.1. Create Python Class

Create a Python Class where you calculate the degrees in Fahrenheit based on
the temperature in Celsius and vice versa.

The formula for converting from Celsius to Fahrenheit is:

Tf = (Tc × 9/5) + 32 (8.1)

The formula for converting from Fahrenheit to Celsius is:

Tc = (Tf − 32)× (5/9) (8.2)

[End of Exercise]

80



Chapter 9

Creating Python Modules

As your program gets longer, you may want to split it into several files for easier
maintenance. You may also want to use a handy function that you have written
in several programs without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use them
in a script or in an interactive instance of the interpreter (the Python Console
window).

9.1 Python Modules

A module is a file containing Python definitions and statements. The file name
is the module name with the suffix .py appended.

Python allows you to split your program into modules that can be reused in
other Python programs. It comes with a large collection of standard modules
that you can use as the basis of your programs as we have seen examples of in
previous chapters. Not it is time to make your own modules from scratch.

Consider a module to be the same as a code library. A file containing a set of
functions you want to include in your application.

Previously you have been using different modules, libraries or packages created
by the Python organization or by others. Here you will create your own modules
from scratch.

Example 9.1.1. Create your first Python Module

We will create a Python module with 2 functions. The first function should
convert from Celsius to Fahrenheit and the other function should convert from
Fahrenheit to Celsius.

The formula for converting from Celsius to Fahrenheit is:

Tf = (Tc × 9/5) + 32 (9.1)

81



The formula for converting from Fahrenheit to Celsius is:

Tc = (Tf − 32)× (5/9) (9.2)

First, we create a Python module with the following functions (fahrenheit.py):

1 de f c2 f (Tc) :
2

3 Tf = (Tc ∗ 9/5) + 32
4 r e turn Tf
5

6

7 de f f 2 c (Tf ) :
8

9 Tc = (Tf − 32) ∗ (5/9)
10 r e turn Tc

Listing 9.1: Fahrenheit Functions

Then, we create a Python script for testing the functions (testfahrenheit.py):

1 from fah r enhe i t import c2f , f 2 c
2

3 Tc = 0
4

5 Tf = c2 f (Tc)
6

7 pr in t ( ”Fahrenheit : ” + s t r (Tf ) )
8

9

10 Tf = 32
11

12 Tc = f2c (Tf )
13

14 pr in t ( ” Ce l s i u s : ” + s t r (Tc) )

Listing 9.2: Python Script testing the functions

The results becomes:

1 Fahrenheit : 32 .0
2 Ce l s i u s : 0 . 0

9.2 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 9.2.1. Create Python Module for converting between radians and
degrees

Since most of the trigonometric functions require that the angle is expressed in
radians, we will create our own functions in order to convert between radians

82



and degrees.

It is quite easy to convert from radians to degrees or from degrees to radians.
We have that:

2π[radians] = 360[degrees] (9.3)

This gives:

d[degrees] = r[radians]× (
180

π
) (9.4)

and

r[radians] = d[degrees]× (
π

180
) (9.5)

Create two functions that convert from radians to degrees (r2d(x)) and from
degrees to radians (d2r(x)) respectively.

These functions should be saved in one Python file .py.

Test the functions to make sure that they work as expected. You can choose to
make a new .py file to test these functions or you can use the Console window.

[End of Exercise]

83



Chapter 10

File Handling in Python

10.1 Introduction

Python has several functions for creating, reading, updating, and deleting files.
The key function for working with files in Python is the open() function.

The open() function takes two parameters; Filename, and Mode.

There are four different methods (modes) for opening a file:

• ”x” - Create - Creates the specified file, returns an error if the file exists

• ”w” - Write - Opens a file for writing, creates the file if it does not exist

• ”r” - Read - Default value. Opens a file for reading, error if the file does
not exist

• ”a” - Append - Opens a file for appending, creates the file if it does not
exist

In addition you can specify if the file should be handled as binary or text mode

• ”t” - Text - Default value. Text mode

• ”b” - Binary - Binary mode (e.g. images)

10.2 Write Data to a File

To create a New file in Python, use the open() method, with one of the following
parameters:

• ”x” - Create - Creates the specified file, returns an error if the file exists

• ”w” - Write - Opens a file for writing, creates the file if it does not exist

• ”a” - Append - Opens a file for appending, creates the file if it does not
exist

84



To write to an Existing file, you must add a parameter to the open() function:

• ”w” - Write - Opens a file for writing, creates the file if it does not exist

• ”a” - Append - Opens a file for appending, creates the file if it does not
exist

Example 10.2.1. Write Data to a File

1 f = open ( ”myf i l e . txt ” , ”x” )
2

3 data = ”He l lo World”
4

5 f . wr i t e ( data )
6

7 f . c l o s e ( )

Listing 10.1: Write Data to a File

[End of Example]

10.3 Read Data from a File

To read to an existing file, you must add the following parameter to the open()
function:

• ”r” - Read - Default value. Opens a file for reading, error if the file does
not exist

Example 10.3.1. Read Data from a File

1 f = open ( ”myf i l e . txt ” , ” r ” )
2

3 data = f . read ( )
4

5 pr in t ( data )
6

7 f . c l o s e ( )

Listing 10.2: Read Data from a File

[End of Example]

10.4 Logging Data to File

Typically you want to write multiple data to the, e.g., assume you read some
temperature data at regular intervals and then you want to save the temperature
values to a File.

Example 10.4.1. Logging Data to File

85



1 data = [ 1 . 6 , 3 . 4 , 5 . 5 , 9 . 4 ]
2

3 f = open ( ”myf i l e . txt ” , ”x” )
4

5 f o r va lue in data :
6 r ecord = s t r ( va lue )
7 f . wr i t e ( record )
8 f . wr i t e ( ”\n” )
9

10 f . c l o s e ( )

Listing 10.3: Logging Data to File

[End of Example]

Example 10.4.2. Read Logged Data from File

1 f = open ( ”myf i l e . txt ” , ” r ” )
2

3 f o r record in f :
4 r ecord = record . r ep l a c e ( ”\n” , ”” )
5 pr in t ( record )
6

7 f . c l o s e ( )

Listing 10.4: Read Logged Data from File

[End of Example]

10.5 Web Resources

Below you find different useful resources for File Handling.

Python File Handling - w3school:
https://www.w3schools.com/python/pythonf ilehandling.asp

Reading and Writing Files - python.org:
https://docs.python.org/3/tutorial/inputoutput.htmlreading-and-writing-files

10.6 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 10.6.1. Data Logging

Assume you have the following data you want to log to a File as shown in Table
10.1.
Log these data to a File.

Create another Python Script that reads the same data.

86



[End of Exercise]

Exercise 10.6.2. Data Logging 2

Assume you read data from a Temperature sensor every 10 seconds for a period
of let say 5 minutes.

Log the data to a File.

You can use the Random Generator in Python. An example of how to use the
Random Generator is shown below:

1 import random
2 f o r x in range (10) :
3 data = random . rand int (1 , 31 )
4 pr in t ( data )

Listing 10.5: Read Data from a File

Make sure to log both the time and the temperature value

Create another Python Script that reads the same data.

You should also plot the data you read from the File.

[End of Exercise]

87



Table 10.1: Logged Data
Time Value
1 22
2 25
3 28
... ...

88



Chapter 11

Error Handling in Python

11.1 Introduction to Error Handling

So far error messages haven’t been discussed. You could say that we have 2
kinds of errors: syntax errors and exceptions.

11.1.1 Syntax Errors

Below we see an example of syntax errors:

1 >>> pr in t ( He l lo World )
2 F i l e ”<ipython−input−1−10cb182148e3>” , l i n e 1
3 pr in t ( He l lo World )
4 ˆ
5 SyntaxError : i n v a l i d syntax

In the example we have written print(Hello World) instead of print(”Hello
World”) and then the Python Interpreter gives us an error message.

11.1.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error
when an attempt is made to execute it. Errors detected during execution are
called exceptions and are not unconditionally fatal: you will soon learn how to
handle them in Python programs. Most exceptions are not handled by programs,
however, and result in error messages as shown here:

1 >>> 10 ∗ (1/0)
2 Traceback (most r e c en t c a l l l a s t ) :
3

4 F i l e ”<ipython−input−2−0b280f36835c>” , l i n e 1 , in <module>
5 10 ∗ (1/0)
6

7 ZeroDiv i s i onErro r : d i v i s i o n by zero

or:

1 >>> ’ 2 ’ + 2
2 Traceback (most r e c en t c a l l l a s t ) :
3

89



4 F i l e ”<ipython−input−3−d2b23a1db757>” , l i n e 1 , in <module>
5 ’ 2 ’ + 2
6

7 TypeError : must be s t r , not i n t

11.2 Exceptions Handling

It is possible to write programs that handle selected exceptions.

In Python we can use the following built-in Exceptions Handling features:

• The try block lets you test a block of code for errors.

• The except block lets you handle the error.

• The finally block lets you execute code, regardless of the result of the try-
and except blocks.

When an error occurs, or exception as we call it, Python will normally stop and
generate an error message.

These exceptions can be handled using the try - except statements.

Some basic example:

1 t ry :
2 10 ∗ (1/0)
3 except :
4 pr in t ( ”The c a l c u l a t i o n f a i l e d ” )

or:

1 t ry :
2 pr in t ( x )
3 except :
4 pr in t ( ”x i s not de f ined ” )

You can also use multiple exceptions:

1 t ry :
2 pr in t ( x )
3 except NameError :
4 pr in t ( ”x i s not de f ined ” )
5 except :
6 pr in t ( ”Something i s wrong” )

The finally block, if specified, will be executed regardless if the try block raises
an error or not.

Example:

90



1 x=2
2

3 t ry :
4 pr in t ( x )
5 except NameError :
6 pr in t ( ”x i s not de f ined ” )
7 except :
8 pr in t ( ”Something i s wrong” )
9 f i n a l l y :

10 pr in t ( ”The Program i s f i n i s h e d ” )

In general you should use try - except - finally when you try to open a File, read
or write to Files, connect to a Database, etc.

Example:

1 t ry :
2 f = open ( ”myf i l e . txt ” )
3 f . wr i t e ( ”Lorum Ipsum” )
4 except :
5 pr in t ( ”Something went wrong when wr i t i ng to the f i l e ” )
6 f i n a l l y :
7 f . c l o s e ( )

91



Chapter 12

Installing and using Python
Packages

A package contains all the files you need for a module. Modules are Python
code libraries you can include in your project.

Since Python is open source you can find thousands of Python Packages that
you can install and use in your Python programs.

You can use a Python Distribution like Anaconda Distribution (or similar
Python Distributions) to download and install many common Python Pack-
ages as mentioned previously.

12.1 What is PIP?

PIP is a package manager for Python packages, or modules if you like. PIP is
a tool for installing Python packages.

If you do not have PIP installed, you can download and install it from this page:
https://pypi.org/project/pip/

PIP is typically used from the Command Prompt (Windows) or Terminal win-
dow (macOS).

Installing Python Packages:

1 pip i n s t a l l packagename

Uninstalling Python Packages:

1 pip u n i n s t a l l packagename

Some Python Editors also have a graphical way of installing Python Packages,
like, e.g., Visual Studio.

92



Part IV

Raspberry Pi Python
Programming

93



Chapter 13

Raspberry Pi and Python

...

94



Chapter 14

Raspberry Pi and GPIO

...

95



Chapter 15

Raspberry Pi and
ThingSpeak

...

96



Chapter 16

Raspberry Pi using SPI and
I2C

...

97



Chapter 17

Raspberry Pi and
CircuitPython

...

98



Chapter 18

Raspberry Pi using Camera

...

99



Chapter 19

Raspberry Pi with
MATLAB

...

100



Part V

Resources

101



Chapter 20

Python Resources

Here you find my Web page with Python resources [1]:
https://www.halvorsen.blog/documents/programming/python/

Python Home Page [7]:
https://www.python.org

Python Standard Library [15]:
https://docs.python.org/3/library/index.html

20.1 Python Distributions

Anaconda:
https://www.anaconda.com

20.2 Python Libraries

NumPy Library:
http://www.numpy.org

SciPy Library:
https://www.scipy.org

Matplotlib Library:
https://matplotlib.org

20.3 Python Editors

Spyder:
https://www.spyder-ide.org

102



Visual studio Code:
https://code.visualstudio.com

Visual Studio:
https://visualstudio.microsoft.com

PyCharm:
https://www.jetbrains.com/pycharm/

Wing:
https://wingware.com

Jupyter Notebook:
http://jupyter.org

20.4 Python Tutorials

Python Tutorial - w3schools.com [14]:
https://www.w3schools.com/python/

The Python Guru [16]:
https://thepythonguru.com

Wikibooks - A Beginner’s Python Tutorial:
https://en.wikibooks.org/wiki/ABeginner

TutorialsPoints - Python Tutorial:
https://www.tutorialspoint.com/python/

The Hitchhiker’s Guide to Python:
https://docs.python-guide.org

Google’s Python Class:
https://developers.google.com/edu/python/

20.5 Python in Visual Studio

Work with Python in Visual Studio
https://docs.microsoft.com/visualstudio/python/

103



Bibliography

[1] H.-P. Halvorsen, “Technology blog - https://www.halvorsen.blog,” 2018.

[2] R. P. Foundation, “Raspberry pi,” 2020.

[3] H.-P. Halvorsen, “Technology blog - https://en.wikipedia.org/wiki/Python(programminglanguage),
′′ 2018.

[4] T. . T. P. Languages, “The 2018 top programming languages
- https://spectrum.ieee.org/at-work/innovation/the-2018-top-
programming-languages,” 2018.

[5] S. Overflow, “Stack overflow developer survey 2018 -
https://insights.stackoverflow.com/survey/2018/,” 2018.

[6] stackoverflow.blog, “The incredible growth of python -
https://stackoverflow.blog/2017/09/06/incredible-growth-python/,”
2018.

[7] python.org, “python.org - https://www.python.org,” 2018.

[8] python.org, “The python tutorial - https://docs.python.org/3.7/tutorial/,”
2018.

[9] python.org, “Python 3.7.1 documentation - https://docs.python.org/3.7/,”
2018.

[10] scipy.org, “Scipy - https://www.scipy.org,” 2018.

[11] matplotlib.org, “Matplotlib - https://matplotlib.org,” 2018.

[12] pandas, “pandas - http://pandas.pydata.org,” 2018.

[13] Wingware, “Wingware python ide - https://wingware.com,” 2018.

[14] w3schools.com, “Python tutorial - https://www.w3schools.com/python/,”
2018.

[15] python.org, “The python standard library -
https://docs.python.org/3/library/,” 2018.

[16] T. P. Guru, “The python guru - https://thepythonguru.com,” 2018.

104



Raspberry Pi and Python


