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Curve Fitting
• In a previous example/video we found 

interpolated points, i.e., we found values 
between the measured points using the 
interpolation technique. 

• It would be more convenient to model the 
data as mathematical function 𝑦 = 𝑓(𝑥). 

• Then we could easily calculate any data we 
want based on this model.



Interpolation

?

Known points ?

?

Interpolation is used to estimate data points between two known points



Curve Fitting

Data
Mathematical Model

Curve Fitting is all about fitting data to a Mathematical Model



• Python has curve fitting functions that allows us to 
create empiric data model. 

• It is important to have in mind that these models are 
good only in the region we have collected data.

• Here are some of the functions available in Python 
used for curve fitting:
• polyfit(), polyval(), curve_fit(), …

• Some of these techniques use a polynomial of degree N 
that fits the data Y best in a least-squares sense.

Curve Fitting in Python



• SciPy is a free and open-source Python library 
used for scientific computing and engineering 

• SciPy contains modules for optimization, linear 
algebra, interpolation, image processing, ODE 
solvers, etc.

• SciPy is included in the Anaconda distribution

SciPy



Polynomials
A polynomial is expressed as:

𝑝 𝑥 = 𝑝!𝑥" + 𝑝#𝑥"$! +⋯+ 𝑝"𝑥 + 𝑝"%!

where 𝑝!, 𝑝#, 𝑝&, … are the coefficients of the polynomial.

We have Linear Regression and Polynomial Regression



Polynomials in Python

import numpy.polynomial.polynomial as poly

p = [5.6, 8, 3.2, 0, -5.45]

r = poly.polyroots(p)
print(r)

Given the following polynomial:
𝑝 𝑥 = −5.45𝑥! + 3.2𝑥" + 8𝑥 + 5.6

We need to rewrite it like this in Python:
𝑝 𝑥 = 5.6 + 8𝑥 + 3.2𝑥" + 0𝑥# −5.45𝑥!

𝑝 𝑥 = 0 → 𝑥 =?
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• Linear Regression is a special case of 
Polynomial Regression
• Linear Regression is a 1.order Polynomial 

(𝑛 = 1)

𝑝 𝑥 = 𝑝!𝑥 + 𝑝"
Or:

𝑦(𝑥) = 𝑎𝑥 + 𝑏

Linear Regression



Linear Regression - Example
𝑥 𝑦
0 15

1 10

2 9

3 6

4 2

5 0

from scipy.optimize import curve_fit

def linear_model(x, a, b):
return a * x + b

x = [0, 1, 2, 3, 4, 5]
y = [15, 10, 9, 6, 2, 0]

popt, pcov = curve_fit(linear_model, x, y)

print(popt)

Assume the Data:

We want to find a linear model 𝑦(𝑥) = 𝑎𝑥 + 𝑏 that fits the data points



Linear Regression - Example
𝑥 𝑦
0 15

1 10

2 9

3 6

4 2

5 0

Assume the Data:

From the Python code we get the following results:

[-2.91428571 14.28571429]

This means 𝑎 ≈ −2.91 and 𝑏 ≈ 14.29

Or:
𝑦 = −2.91𝑥 + 14.29

The curve_fit() function returns two items, which we call popt and pcov. The popt
argument are the best-fit parameters (p optimal) for a and b. The pcov variable contains the 
covariance matrix, which indicates the uncertainties and correlations between parameters.



Example - Improved
Next, it is also a good idea to plot the actual 
data in the same plot as the model for 
comparison. 

We extend the code as follows:

import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

def linear_model(x, a, b):
return a * x + b

x = [0, 1, 2, 3, 4, 5]
y = [15, 10, 9, 6, 2, 0]

popt, pcov = curve_fit(linear_model, x, y)

print(popt)

plt.plot(x,y, 'or')

xstart = -1
xstop = 6
increment = 0.1
xmodel = np.arange(xstart,xstop,increment)

a = popt[0]
b = popt[1]

ymodel = a*xmodel + b

plt.plot(xmodel,ymodel, 'b')



Polynomial Regression

Hans-Petter Halvorsen

https://www.halvorsen.blog



• In the previous section we used linear 
regression which is a 1. order polynomial. 

• In this section we will study higher order 
polynomials.

• In polynomial regression we will find the 
following model:
𝑦 𝑥 = 𝑎!𝑥" + 𝑎#𝑥"$# +⋯+ 𝑎"$#𝑥 + 𝑎"

Polynomial Regression



Polynomial Regression - Example

𝑦 𝑥 = 𝑎!𝑥" + 𝑎#𝑥"$# +⋯+ 𝑎"$#𝑥 + 𝑎"

We want to find models on the form:

Given the following Data:

𝑥 𝑦
0 15

1 10

2 9

3 6

4 2

5 0

We will use the Python to find and compare the models using 
different orders of the polynomial.

We will investigate models of 2.order, 3.order, 4.order and 
5.order.

We have only 6 data points, so a model with order higher 
than 5 will make no sense.

Typically we have much more data, but this is just an 
example to demonstrate the principle of curve fitting.



Polynomial Regression - Example
We start with a 2.order model:

𝑦 𝑥 = 𝑎𝑥% + 𝑏𝑥 + 𝑐

import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
y = [15, 10, 9, 6, 2, 0]

def model(x, a, b, c):
y = a * x ** 2 + b * x + c
return y 

popt, pcov = curve_fit(model, x, y)
print(popt)

plt.plot(x,y, 'ok')

xstart = -1
xstop = 6
increment = 0.1
xmodel = np.arange(xstart,xstop,increment)

a = popt[0]
b = popt[1]
c = popt[2]

ymodel = model(xmodel, a, b, c)

plt.plot(xmodel,ymodel, 'b')

[ 0.05357143 -3.18214286 14.46428571]

𝑦 𝑥 = 0.05𝑥% − 3.18𝑥 + 14.46



Example – Improved Solution
We start with a 2.order model:

𝑦 𝑥 = 𝑎𝑥% + 𝑏𝑥 + 𝑐

import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
y = [15, 10, 9, 6, 2, 0]

def model(x, a, b, c):
y = a * x ** 2 + b * x + c
return y 

popt, pcov = curve_fit(model, x, y)

print(popt)

plt.plot(x,y, 'ok')

xstart = -1
xstop = 6
increment = 0.1
xmodel = np.arange(xstart,xstop,increment)

ymodel = model(xmodel, *popt)

plt.plot(xmodel,ymodel, 'b')

[ 0.05357143 -3.18214286 14.46428571]

𝑦 𝑥 = 0.05𝑥% − 3.18𝑥 + 14.46



Example cont.
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
y = [15, 10, 9, 6, 2, 0]

def model1(x, a, b):
y = a * x + b
return y 

def model2(x, a, b, c):
y = a * x ** 2 + b * x + c
return y 

def model3(x, a, b, c, d):
y = a * x**3 + b * x**2 + c * x + d
return y 

def model4(x, a, b, c, d, e):
y = a * x**4 + b * x**3 + c * x**3 + d * x + e
return y 

def model5(x, a, b, c, d, e, f):
y = a * x**5 + b * x**4 + c * x**3 + d * x**2 + e * x + f
return y 

popt, pcov = curve_fit(model5, x, y)

print(popt)

plt.plot(x,y, 'or')

xstart = -1
xstop = 6
increment = 0.1
xmodel = np.arange(xstart,xstop,increment)

#ymodel = model1(xmodel, *popt)
#ymodel = model2(xmodel, *popt)
#ymodel = model3(xmodel, *popt)
#ymodel = model4(xmodel, *popt)
ymodel = model5(xmodel, *popt)

plt.plot(xmodel,ymodel, 'b')

1.order model:
𝑦 𝑥 = 𝑎𝑥 + 𝑏

2.order model:
𝑦 𝑥 = 𝑎𝑥! + 𝑏𝑥 + 𝑐

3.order model:
𝑦 𝑥 = 𝑎𝑥" + 𝑏𝑥! + 𝑐𝑥 + 𝑑

4.order model:
𝑦 𝑥 = 𝑎𝑥# + 𝑏𝑥" + 𝑐𝑥! + 𝑑𝑥 + 𝑒

5.order model:
𝑦 𝑥 = 𝑎𝑥$ + 𝑏𝑥# + 𝑐𝑥" + 𝑑𝑥! + 𝑒𝑥 + 𝑓

As expected, the higher order models match the data better 
and better.

Note! The 5.order model matches exactly because there 
were only six data points available.

It is important to have in mind that these models are good 
only in the region we have collected data.



polyfit() and 
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polyfit() and polyval()
In this example we will use the NumPy 
functions polyfit() and polyval().

𝑦 𝑥 = 𝑎𝑥& + 𝑏𝑥% + 𝑐𝑥 + 𝑑

We start with a 3.order model:

import numpy as np
import matplotlib.pyplot as plt

# Original Data
x = [0, 1, 2, 3, 4, 5]
y = [15, 10, 9, 6, 2, 0]
plt.plot(x,y, 'or')

# Set Model order
model_order = 3

# Find Model
p = np.polyfit(x, y, model_order)
print(p)

# Plot the Model
xstart = -1
xstop = 6
increment = 0.1
xmodeldata = np.arange(xstart,xstop,increment)

ymodel = np.polyval(p, xmodeldata) 
plt.plot(xmodeldata,ymodel)

The NumPy functions polyfit() and 
polyval()only works for Polynomials



polyfit() and polyval()
In this example we will use the NumPy functions polyfit() and 
polyval().

𝑦 𝑥 = 𝑎𝑥& + 𝑏𝑥% + 𝑐𝑥 + 𝑑

We start with a 3.order model:

We get the following results:

[-0.06481481  0.53968254 -4.07010582 14.65873016]

This means the following 3.order model:

𝑦 𝑥 = −0.06𝑥& + 0.54𝑥% − 4.1𝑥 + 14.7

𝑥 𝑦

0 15

1 10

2 9

3 6

4 2

5 0



Example modified
Let's extend the code by creating different 
models with different orders. For easy 
comparison of different models in the same 
program we can use a For loop as shown in 
the code example.

import numpy as np
import matplotlib.pyplot as plt

# Original Data
x = [0, 1, 2, 3, 4, 5]
y = [15, 10, 9, 6, 2, 0]

plt.plot(x,y, 'ok')

# x values for model
xstart = -1
xstop = 6
increment = 0.1
xmodel = np.arange(xstart,xstop,increment)

startorder = 1
endorder = 5

for model_order in range(startorder, endorder, 1):

# Finding the Model
p = np.polyfit(x, y, model_order)

print(p)

# Plot the Model
ymodel = np.polyval(p, xmodel) 

plt.plot(xmodel,ymodel)

The results are the same as shown in a previous 
example using the curve_fit() function
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Curve Fitting
We have now used the curve_fit() function for finding a linear model (𝑦 = 𝑎𝑥 + 𝑏) and 
find Polynomial models of different orders (𝑦 𝑥 = 𝑎!𝑥" + 𝑎#𝑥"$# +⋯+ 𝑎"$#𝑥 + 𝑎")
But we can adjust a given data set to all kinds of models that we specify in our Python function

..

def model(x, ..):
y = ..
return y 

x = [..]
y = [..]

popt, pcov = curve_fit(model, x, y)

Assume we want to fit some data to a 
sin() function, a logarithmic function, 
an exponential function, etc.



Curve Fitting
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

start = 0
stop = 2*np.pi
increment = 0.5
x = np.arange(start,stop,increment)

a = 2
b = 10
np.random.seed()
y_noise = 0.2 * np.random.normal(size=x.size)
y = a * np.sin(x + b)
y = y + y_noise

plt.plot(x,y, 'or')

def model(x, a, b):
y = a * np.sin(x + b)
return y 

popt, pcov = curve_fit(model, x, y)

increment = 0.1
xmodeldata = np.arange(start,stop,increment)

ymodel = model(xmodeldata, *popt)

plt.plot(xmodeldata,ymodel)

Assume we want to fit some given data to 
the following model:

𝑦 𝑥 = a 0 sin(𝑥 + 𝑏)
Data Points (red 
dots) used to find the 
Model

Model (blue line) found 
from the data
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Dynamic System - Example

We want to fit the data to the following model: 

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒?
@
A)

We have a set of logged data which We have 
logged data from a “real system“.

Where 𝐾 and 𝑇 are Model Parameters we need to find

System 𝑦(𝑡)
𝑈 = 1

𝑡 𝑦(𝑡)

0 …

1 …

2 …

3 …

… …

… …

𝑦̇ =
1
𝑇 (−𝑥 + 𝐾𝑢)

The equation above is actually the solution for the 
differential equation given below:

We apply a step (u=U=1) in the input signal and log the output signal



Python Code
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

t = [0, 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]

y = [0, 0.66, 1.18, 1.58, 1.89, 2.14, 2.33, 2.47, 2.59, 2.68, 2.75, 2.80, 2.85, 2.88, 2.90, 2.92, 
2.94, 2.95, 2.96667301, 2.97, 2.97, 2.98, 2.98, 2.99, 2.99, 2.99, 2.99, 2.99, 2.99, 2.99, 2.99]

def model(t, K, T):
y = K * (1-np.exp(-t/T))
return y 

popt, pcov = curve_fit(model, t, y)
print(popt)
plt.plot(x,y, 'or')

start = 0
stop = 31
increment = 0.1
xmodeldata = np.arange(start,stop,increment)
ymodel = model(xmodeldata, *popt)
plt.plot(xmodeldata, ymodel)

The Python code gives the following results:
[3. 4.]

𝑦 𝑡 = 𝐾(1 − 𝑒$
'
()

This means 𝐾 = 3 and 𝑇 = 4

𝑦 𝑡 = 3(1 − 𝑒$
'
))



Simulated Data
import matplotlib.pyplot as plt
import control

s = control.TransferFunction.s

K = 3
T = 4
H  = K/(T*s + 1)
print ('H(s) =', H)

start = 0
stop = 31
increment = 1
t = np.arange(start,stop,increment)

t, y = control.step_response(H, t)

plt.plot(t,y)

print(t)
print(y)

𝐻(𝑠) =
𝐾

𝑇𝑠 + 1𝑢(𝑡) 𝑦(𝑡)

Where 𝐾 is the Gain and 𝑇 is the Time constant

In the time domain we get the following 
solution (using Inverse Laplace):

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒$
'
()

In the example I have simulated a 1. order 
dynamic system

𝑦̇ =
1
𝑇 (−𝑦 + 𝐾𝑢)

Differential Equation:
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Least Square Method (LSM)

𝑌 = Φ𝜃

𝜃+, = Φ-Φ $!Φ-𝑌

The least squares method requires the model 
to be set up in the following form based on 
input-output data :

The Least Square Method is given by:

The Least Square fit

Data Points



LSM Example
Given the following Data:

𝑥 𝑦

0 15

1 10

2 9

3 6

4 2

5 0

The Least Square fit

Data Points

𝑦 = 𝑎𝑥 + 𝑏𝑦 = 𝑎𝑥 + 𝑏

15 = 𝑎 K 0 + 𝑏
10 = 𝑎 K 1 + 𝑏
9 = 𝑎 K 2 + 𝑏
6 = 𝑎 K 3 + 𝑏
2 = 𝑎 K 4 + 𝑏
0 = 𝑎 K 5 + 𝑏

We need to find 𝑎 and 𝑏

𝑌 = Φ𝜃

15
10
9
6
2
0

=

0 1
1
2
3

1
1
1

4
5

1
1

𝑎
𝑏



Python Code
import numpy as np

Phi = np.array([[0, 1], [1, 1], [2, 1], [3, 1], [4, 1], [5, 1]])

Y = np.array([[15],[10],[9],[6],[2],[0]])

theta_ls = np.linalg.lstsq(Phi, Y, rcond=None)[0]
print(theta_ls)

theta_ls = np.linalg.inv(Phi.transpose() * np.mat(Phi)) * Phi.transpose() * Y
print(theta_ls)

From the Python code we get the following results:
[-2.91428571 14.28571429]
This means 𝑎 = −2.91 and 𝑏 = 14.29
Or:

𝑦 = −2.91𝑥 + 14.29

Which is the same results as shown in 
previous examples 

Compare built-in LSM and LMS from scratch
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