
Linear Algebra
in Python
Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Linear Algebra
• Matrices and Vectors
• The NumPy Library
• Solving Linear Equations
• Python Examples

Contents

• Linear Algebra is central and important in almost all areas
of mathematics

• Linear Algebra is the “Mathematics of Data“
• Foundation: Vectors and Matrices
• Linear Equations
• Modern statistics and data analysis depends on Linear

Algebra
• Linear Algebra plays an important role in advanced

Control Engineering
• Linear Algebra plays an important role in Machine

Learning

Linear Algebra

Matrices

𝐴 =
𝑎!! ⋯ 𝑎!"
⋮ ⋱ ⋮
𝑎#! ⋯ 𝑎#"

A general matrix is given by:

A matrix is a two-dimensional data structure where numbers are arranged into rows
and columns.

Matrices are very important data structures for many mathematical and scientific
calculations.

Where 𝑛 is number of rows and 𝑚 is number of columns.

Examples
Example of a 3 x 3 matrix:

𝐴 =
1 5 3
4 6 6
3 8 9

Example of a 3 x 4 matrix: 𝐴 =

1 5
4 5
3 2
7 8

Example of a 4 x 2 matrix:

𝐴 =
1 5 3 4
4 5 7 8
7 8 9 3

Vectors

𝑥 =

𝑥!
𝑥$
⋮
𝑥#

A general vector is given by:

A vector is a one-dimensional data structure where numbers are arranged into rows
or columns.

Matrices and vectors are very important data structures for many mathematical and scientific
calculations.

Where n is number of rows and m is number of columns.

Vectors

𝑥 =

𝑥!
𝑥"
⋮
𝑥#

Assume the vector 𝑥:

The Transpose of vector 𝑥 is

𝑥$ = 𝑥! 𝑥" ⋯ 𝑥#

The Length of vector 𝑥 is given by:

𝑥 = 𝑥$𝑥 = 𝑥!" + 𝑥"" +⋯+ 𝑥#"

The length of a vector most makes sense
for 2 or 3 dimensional vectors.

It can be visualized like this:

𝑣 = 3, 4

𝑣 = 3" + 4" = 9 + 16 = 25 = 5

In order to find the length of 𝑣 we use Pythagoras like this:

Example:

Standard Python
a = [1, 3, 7, 2]

print("a =", a)

A = [[1, 3, 7, 2],
[5, 8, -9, 0],
[6, -7, 11, 12]]

print("A =", A)

𝑎 =
1
3
7
2

Example of vector:

Example of a 3 x 4 matrix:

𝐴 =
1 3 7 2
5 8 −9 0
6 −7 11 12

Python doesn't have a built-in type for matrices. However, we can treat list of a list as a matrix.

So we can define vectors and matrices with standard Python, but standard Python has no
support for manipulation and calculation of them.
But fortunately we can use the NumPy package for creating matrices and for matrix
manipulation.

Linear algebra (numpy.linalg)
• The NumPy library has a submodule for Linear

Algebra, namely numpy.linalg
https://numpy.org/doc/stable/reference/routines.linalg.html

• The SciPy library also contains a linalg submodule,
and there is overlap in the functionality provided
by the SciPy and NumPy submodules.

https://docs.scipy.org/doc/scipy/reference/linalg.html#module-
scipy.linalg

https://numpy.org/doc/stable/reference/routines.linalg.html
https://docs.scipy.org/doc/scipy/reference/linalg.html

numpy.array
import numpy as np

a = np.array([[1],
[3],
[7],
[2]])

print("a =", a)

A = np.array([[1, 3, 7, 2],
[5, 8, -9, 0],
[6, -7, 11, 12]])

print("A =", A)
𝑎 =

1
3
7
2

Example of vector:

Example of a 3 x 4 matrix:

𝐴 =
1 3 7 2
5 8 −9 0
6 −7 11 12

Let's use the Array feature in the NumPy Library:

numpy.matrix
import numpy as np

a = np.array([[1],
[3],
[7],
[2]])

print("a =", a)

A = np.matrix([[1, 3, 7, 2],
[5, 8, -9, 0],
[6, -7, 11, 12]])

print("A =", A)

𝑎 =
1
3
7
2

Example of vector:

Example of a 3 x 4 matrix:

𝐴 =
1 3 7 2
5 8 −9 0
6 −7 11 12

Let's use the Matrix feature in the NumPy Library:

numpy.matrix

More Information:

https://numpy.org/doc/stable/reference/generated/numpy.matrix.html

Note!
It is no longer recommended to use this class, even for linear
algebra. Instead use regular arrays. The class may be
removed in the future. See NumPy documentation for details.

https://numpy.org/doc/stable/reference/generated/numpy.matrix.html

Matrix Addition, Subtraction, Multiplication
Given the following: 𝐴 = 0 1

−2 −3 𝐵 = 1 0
3 −2

Matrix Addition:

𝐴 + B = 0 1
−2 −3 + 1 0

3 −2 = 0 + 1 1 + 0
−2 + 3 −3 + (−2) = 1 1

1 −5

Matrix Subtraction:

𝐴 − B = 0 1
−2 −3 − 1 0

3 −2 = 0 − 1 1 − 0
−2 − 3 −3 − (−2) = −1 1

−5 −1

Matrix Multiplication:

𝐴B = 0 1
−2 −3

1 0
3 −2 = = 0 ; 1 + 1 ; 3 0 ; 0 + 1 ; (−2)

−2 ; 1 − 3 ; 3 −2 ; 0 − 3 ; (−2) = 3 −2
−11 6

Matrix Addition, Subtraction, Multiplication
import numpy as np

A = np.matrix([[0, 1],
[-2, -3]])

B = np.matrix([[1, 0],
[3, -2]])

C = A + B
print("A+B =", C)

C = A - B
print("A-B =", C)

C = A * B
print("A*B =", C)

Matrix Addition, Subtraction, Multiplication

𝐴 = 0 1
−2 −3

𝐵 = 1 0
3 −2

A+B =
[[1 1]
[1 -5]]
A-B =
[[-1 1]
[-5 -1]]
A*B =
[[3 -2]
[-11 6]]

In this example we use numpy.matrix

Given the following matrices:

Note!
It is no longer recommended to use this
class, even for linear algebra. Instead use
regular arrays. The class may be removed
in the future. See NumPy documentation.

Cont.
import numpy as np

A = np.array([[0, 1],
[-2, -3]])

B = np.array([[1, 0],
[3, -2]])

C = A + B
print("A+B =", C)

C = A - B
print("A-B =", C)

C = A * B
print("A*B =", C) # Not Working!, only elementwise
Multiplication!

#Working Alternative 1
C = A.dot(B)
print("A*B =", C)

#Working Alternative 2
C = np.dot(A,B)
print("A*B =", C)

#Working Alternative 3
C = np.mat(A) * np.mat(B)
print("A*B =", C)

#Working Alternative 4
C = np.matmul(A,B)
print("A*B =", C)

Matrix Addition, Subtraction, Multiplication

𝐴 = 0 1
−2 −3

𝐵 = 1 0
3 −2

In this example we use numpy.array

Given the following matrices:
A+B = [[1 1]
[1 -5]]

A-B = [[-1 1]
[-5 -1]]

A*B = [[0 0]
[-6 6]]

A*B = [[3 -2]
[-11 6]]

A*B = [[3 -2]
[-11 6]]

A*B = [[3 -2]
[-11 6]]

A*B = [[3 -2]
[-11 6]]

Matrix Multiplication
• In matrix multiplication the matrices don't need to be

quadratic, but the inner dimensions need to be the same.
• The size of the resulting matrix will be the outer dimensions.

𝐴 × 𝐵 = 𝐶
𝑛×𝑚 𝑚×𝑝 𝑛×𝑝

Inner dimensions
need to be the same

The resulting matrix will
be the outer dimensions

Examples
import numpy as np

A = np.array([[1, 5, 3],
[4, 6, 6],
[3, 8, 9]])

B = np.array([[1, 5, 3, 4],
[4, 5, 7, 8],
[7, 8, 9, 3]])

C = np.array([[1],
[4],
[3]])

D = np.array([[1, 5, 3]])

M = np.matmul(A,B)
print("M=", M)

#M = np.matmul(B,A) # Not Working!

M = np.matmul(A,C)
print("M=", M)

#M = np.matmul(C,A) # Not Working!

M = np.matmul(C,D)
print("M=", M)

M = np.matmul(D,C)
print("M=", M)

𝐴 =
1 5 3
4 6 6
3 8 9
(3×3)

𝐵 =
1 5 3 4
4 5 7 8
7 8 9 3

(3×4)𝐶 =
1
4
3

(3×1)
𝐷 = 1 5 3

(1×3)

𝐴×𝐵 = 3×3 × 3×4 = (3×4)
𝐵×𝐴 = 3×4 × 3×3 = Not Legal
𝐴×𝐶 = 3×3 × 3×1 = (3×1)

C×𝐷 = 3×1 × 1×3 = (3×3)
𝐷×𝐶 = 1×3 × 3×1 = (1×1) etc.

C×𝐴 = 3×1 × 3×3 = Not Legal

Transpose of a Matrix
A general matrix is given by:

Where 𝑛 is number of rows
and 𝑚 is number of columns

The transpose of matrix 𝐴 is then:

𝐴. =

𝑎// 𝑎0/ ⋯ 𝑎1/
𝑎/0 𝑎00 ⋯ 𝑎10
⋮ ⋮ ⋱ ⋮

𝑎/2 𝑎02 ⋯ 𝑎12

𝐴 =

𝑎@@ 𝑎@A ⋯ 𝑎@B
𝑎A@ 𝑎AA ⋯ 𝑎AB
⋮ ⋮ ⋱ ⋮
𝑎C@ 𝑎CA ⋯ 𝑎CB (𝑛×𝑚)

(𝑚×𝑛)

Transpose of a Matrix - Examples

𝐵 =

1 5
4 5
3 2
7 8

𝐴 =
1 3 7 2
5 8 −9 0
6 −7 11 12

𝐴D =

1 5 6
3 8 −7
7 −9 11
2 0 12

𝐵D = 1 4 3 7
5 5 2 8

Transpose of a Matrix import numpy as np

A = np.array([[1, 3, 7, 2],
[5, 8, -9, 0],
[6, -7, 11, 12]])

print("A="); print(A)

Atr = np.transpose(A)

print("Transpose of A="); print(Atr)

B = np.array([[1, 5],
[4, 5],
[3, 2],
[7, 8]])

print("B="); print(B)

Btr = np.transpose(B)

print("Transpose of B="); print(Btr)

𝐴 =
1 3 7 2
5 8 −9 0
6 −7 11 12

𝐴$ = ?

𝐵 =

1 5
4 5
3 2
7 8

𝐵$ = ?

Transpose of A=
[[1 5 6]
[3 8 -7]
[7 -9 11]
[2 0 12]]

Transpose of B=
[[1 4 3 7]
[5 5 2 8]]

Determinant of a Matrix

• The Determinant of a matrix is a special number that can be
calculated from square matrices

What is the Determinant used for?
• The determinant helps us find the inverse matrix (which we

will cover later)
• The Determinant will give us useful information when dealing

with Systems of Linear Equations (which we will cover later)
• Used in advanced Control Engineering theory
• Etc.

Determinant of a Matrix
Given a matrix 𝐴 the Determinant is given by:

𝑑𝑒𝑡 𝐴 = 𝐴

For a 2𝑥2 matrix we have:

𝐴 =
𝑎@@ 𝑎@A
𝑎A@ 𝑎AA

𝑑𝑒𝑡 𝐴 = 𝐴 = 𝑎@@ 𝑎AA − 𝑎A@ 𝑎@A

𝐴 = 1 2
3 4

Example:

𝑑𝑒𝑡 𝐴 = 𝐴 = 1 6 4 − 3 6 2 = 4 − 6 = −2

Determinant of a Matrix
For a 3𝑥3 matrix we have:

𝑑𝑒𝑡 𝐴 = 𝐴 = 𝑎!!
𝑎"" 𝑎"#
𝑎#" 𝑎## − 𝑎"!

𝑎!" 𝑎!#
𝑎#" 𝑎## + 𝑎#!

𝑎!" 𝑎!#
𝑎"" 𝑎"#

𝐴 =
𝑎!! 𝑎!" 𝑎!%
𝑎"! 𝑎"" 𝑎"%
𝑎%! 𝑎%" 𝑎%%

It will be a little more complicated and time-consuming work for systems with larger order,
so we need a programming language like python to handle this.

We develop the determinant along a row or a column.

Here we have developed the determinant along the first column

We see that the determinant of a higher order system can be expressed as a sum of lower
order determinants

Determinant of a Matrix
Example:

𝐴 =
−1 3 0
2 1 −5
1 4 −2

𝑑𝑒𝑡 𝐴 = (−1) 1 −5
4 −2 − 2 3 0

4 −2 + 1 3 0
1 −5

This gives:

1 −5
4 −2 = −2 − −20 = 18

3 0
4 −2 = −6 − 0 = −6 3 0

1 −5 = −15 − 0 = −15

Finally:

𝑑𝑒𝑡 𝐴 = −18 + 12 − 15 = −21

Determinant of a Matrix
import numpy as np
import numpy.linalg as la

A = np.array([[1, 2],
[3, 4]])

Adet = la.det(A)

print(Adet)

B = np.array([[-1, 3, 0],
[2, 1, -5],
[1, 4, -2]])

Bdet = la.det(B)

print(Bdet)

𝐴 = 1 2
3 4 𝐵 =

−1 3 0
2 1 −5
1 4 −2

Given the following Matrices:

-2.0000000000000004
-21.00000000000001

Python Solution:

𝑑𝑒𝑡 𝐴 = −2

𝑑𝑒𝑡 𝐵 = −21

Inverse Matrices
𝐴&! 𝐴𝐴&! = 𝐴&!𝐴 = 𝐼

For a 2𝑥2 matrix we have:

𝐴&! =
1

𝑑𝑒𝑡(𝐴)
𝑎"" −𝑎!"
−𝑎"! 𝑎!!

𝐴 =
𝑎!! 𝑎!"
𝑎"! 𝑎""

The inverse 𝐴&! is then given by

The inverse of a quadratic matrix 𝐴 is defined by: Note:

𝐴 = 1 2
3 4

Example:

𝑑𝑒𝑡 𝐴 = 𝐴 = 1 * 4 − 3 * 2 = 4 − 6 = −2
𝐴&! = !

'()(+)
4 −2
−3 1

Where:

This gives: 𝐴&! = !
&"

4 −2
−3 1 = −2 1

1.5 −0.5
It will be more complicated for systems with larger order, so we need a programming language
like python to handle this.

Inverse Matrices
import numpy as np
import numpy.linalg as la

A = np.array([[1, 2],
[3, 4]])

Ainv = la.inv(A)

print(Adet)

B = np.array([[-1, 3, 0],
[2, 1, -5],
[1, 4, -2]])

Binv = la.inv(B)

print(Binv)

𝐴 = 1 2
3 4 𝐵 =

−1 3 0
2 1 −5
1 4 −2

Given the following Matrices:

Python Solution:

𝐴&! = −2 1
1.5 −0.5

𝐵&! =?

[[-2. 1.]
[1.5 -0.5]]

[[-0.85714286 -0.28571429 0.71428571]
[0.04761905 -0.0952381 0.23809524]
[-0.33333333 -0.33333333 0.33333333]]

Eigenvalues
The Eigenvalues for a given matrix 𝐴 is: det 𝜆𝐼 − 𝐴 = 0

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html

Example:

In Python we use the function eig(). For more details:

𝜆 1 0
0 1 − 0 1

−2 −3 = 𝜆 0
0 𝜆 − 0 1

−2 −3 = 𝜆 −1
2 𝜆 + 3

𝑑𝑒𝑡 𝐴 = 𝐴 = 𝑎!! 𝑎"" − 𝑎"! 𝑎!"

det 𝜆𝐼 − 𝐴 = 𝜆(𝜆 + 3) − (−1)(2) = 0

𝜆" + 3𝜆 + 2 = 0

𝐴 = 0 1
−2 −3

𝑥 =
−𝑏 ± 𝑏" − 4𝑎𝑐

2𝑎

𝜆 =
−3 ± 3" − 4 ; 1 ; (2)

2 ; 1
=
−3 ± 1
2 𝜆! = −1, 𝜆" = −2

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html

Eigenvalues

import numpy as np
import numpy.linalg as la

A = np.array([[0, 1],
[-2, -3]])

Aeig, v = la.eig(A)

print(Aeig)

𝐴 = 0 1
−2 −3

[-1. -2.]

𝑒𝑖𝑔 𝐴 = −1
−2

𝜆! = −1, 𝜆$= −2

Matrices Rules

𝐴𝐵 ≠ 𝐵𝐴
𝐴 𝐵𝐶 = 𝐴𝐵 𝐶
𝐴 + 𝐵 𝐶 = 𝐴𝐶 + 𝐵𝐶
𝐶 𝐴 + 𝐵 = 𝐶𝐴 + 𝐶𝐵
det 𝐴𝐵 = det 𝐴 det 𝐵
det 𝐴% = det(𝐴)
𝐴𝐴&! = 𝐴&!𝐴 = 𝐼

Some important Matrices Rules:

Matrices Rules
import numpy as np

A = np.array([[0, 1],
[-2, -3]])

B = np.array([[1, 0],
[3, -2]])

C = np.array([[1, 1],
[1, -5]])

print("AB Not Equal BA")
L = np.matmul(A,B)
print("L=");print(L)

R = np.matmul(B,A)
print("R=");print(R)

print("A(BC) = (AB)C")
L = np.matmul(A,np.matmul(B,C))
print("L=");print(L)

R = np.matmul(np.matmul(A,B),C)
print("R=");print(R)

𝐴𝐵 ≠ 𝐵𝐴
𝐴 𝐵𝐶 = 𝐴𝐵 𝐶
𝐴 + 𝐵 𝐶 = 𝐴𝐶 + 𝐵𝐶
𝐶 𝐴 + 𝐵 = 𝐶𝐴 + 𝐶𝐵
det 𝐴𝐵 = det 𝐴 det 𝐵
det 𝐴D = det(𝐴)
𝐴𝐴R@ = 𝐴R@𝐴 = 𝐼

Some important Matrices Rules:

𝐴 = 0 1
−2 −3 𝐵 = 1 0

3 −2 𝐶 = 1 1
1 −5

Matrices Rules
import numpy as np

A = np.array([[0, 1],
[-2, -3]])

B = np.array([[1, 0],
[3, -2]])

C = np.array([[1, 1],
[1, -5]])

print("(A+B)C = AC + BC")
L = np.matmul(A+B,C)
print("L=");print(L)

R = np.matmul(A,C) + np.matmul(B,C)
print("R=");print(R)

print("AA^(-1) = A^(-1)A = I")
L = np.matmul(A, la.inv(A))
print("L=");print(L)

R = np.matmul(la.inv(A),A)
print("R=");print(R)

𝐴𝐵 ≠ 𝐵𝐴
𝐴 𝐵𝐶 = 𝐴𝐵 𝐶
𝐴 + 𝐵 𝐶 = 𝐴𝐶 + 𝐵𝐶
𝐶 𝐴 + 𝐵 = 𝐶𝐴 + 𝐶𝐵
det 𝐴𝐵 = det 𝐴 det 𝐵
det 𝐴D = det(𝐴)
𝐴𝐴R@ = 𝐴R@𝐴 = 𝐼

Some important Matrices Rules:

𝐴 = 0 1
−2 −3 𝐵 = 1 0

3 −2 𝐶 = 1 1
1 −5

Solving Linear
Equations

Hans-Petter Halvorsen

https://www.halvorsen.blog

Linear Equations

𝐴𝑥 = 𝑏

𝑥 = 𝐴;/𝑏

Solution:

(assuming 𝐴&! is possible)

𝑎!!𝑥! + 𝑎!"𝑥" + 𝑎!#𝑥# +⋯ = 𝑏!
𝑎"!𝑥! + 𝑎"!𝑥" + 𝑎"#𝑥# +⋯ = 𝑏"

⋯

Given the following linear equations:

These equations can be set on the following general form:

Where A is a matrix, x is a vector with the unknowns and b
is a vector of constants

𝐴 =
𝑎!! ⋯ 𝑎!-
⋮ ⋱ ⋮
𝑎#! ⋯ 𝑎#-

𝑥 =

𝑥!
𝑥"
⋮
𝑥#

𝑏 =

𝑏!
𝑏"
⋮
𝑏#

Example
Given the following linear equations:

𝑥/ + 2𝑥0 = 5
3𝑥/ + 4𝑥0 = 6

This gives:

𝐴𝑥 = 𝑏
We want to put the equations on the following general form:

𝐴 = 1 2
3 4 𝑏 = 5

6 𝑥 =
𝑥!
𝑥"

𝑥 = 𝐴!"𝑏
The solution is given by:

Example - Python
Python code:

import numpy as np
import numpy.linalg as la

A = np.array([[1, 2],
[3, 4]])

b = np.array([[5],
[6]])

Ainv = la.inv(A)

x = Ainv.dot(b)

print(x)

This gives the following solution:
[[-4.]
[4.5]]

This means:
𝑥! = −4
𝑥" = 4.5

Which is the same as the solution we
got from our manual calculations

Note! The A matrix must be square and of full-
rank, i.e. the inverse matrix needs to exists.

Example – Python (Alt2)

Python code:
import numpy as np

A = np.array([[1, 2],
[3, 4]])

b = np.array([[5],
[6]])

x = np.linalg.solve(A, b)

print(x)

This gives the following solution:
[[-4.]
[4.5]] This means:

𝑥! = −4
𝑥" = 4.5

Which is the same as the solutions we
got from the other methods

x = np.linalg.solve(A, b)

We can also use the linalg.solve()function

Note! The A matrix must be square and of full-
rank, i.e. the inverse matrix needs to exists.

Python Example – Least Square
Python code:

import numpy as np

A = np.array([[1, 2],
[3, 4],
[7, 8]])

b = np.array([[5],
[6],
[9]])

x = np.linalg.lstsq(A, b, rcond=None)[0]

print(x)

The results becomes:
[[-3.5]
[4.17857143]]

Given the following linear equations:

𝑥@ + 2𝑥A = 5
3𝑥@ + 4𝑥A = 6
7𝑥@ + 8𝑥A = 9

𝐴𝑥 = 𝑏

𝑥! = 3.5, 𝑥" = 4.2

Note! In this example the
𝐴 matrix is not quadratic,
and the inverse of 𝐴 does
not exist! We need to use
another method, e.g., the
Least Square Method
(LSM)

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

