
Hans-Petter Halvorsen

https://www.halvorsen.blog

PostgreSQL

Contents
• Introduction
• Getting Started with PostgreSQL

– pgAdmin, Query Tool, Create Database and Tables, ERD
Tool

• SQL Queries
– INSERT, SELECT, UPDATE and DELETE

• Views
• Stored Procedures
• Triggers

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

PostgreSQL

Introduction
• PostgreSQL is an open-source object-

relational database system.
• Many other SQL databases exists like SQL

Server, MySQL, MariaDB etc.
• We will focus on PostgreSQL in this Tutorial.

PostgreSQL
• PostgreSQL is an open-source object-relational database

system.
• PostgreSQL exists for Windows, macOS and Linux.
• Homepage: https://www.postgresql.org
• EnterpriseDB (EDB) is the company that is one of the largest

contributor to PostgreSQL and responsible for the installer.
• EDB offer paid services for enterprises, but PostgreSQL itself

is free.
• ERD Download Page:

https://www.enterprisedb.com/downloads/postgres-
postgresql-downloads

https://www.postgresql.org/
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

Installation

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

I just use the default installation setup. In addition,
you need to create a password for the database
superuser that you need to remember for later.

Make sure to remember the Password!

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

pgAdmin
• pgAdmin is graphical tool for managing your

PostgreSQL database.
• pgAdmin is part of the installer from EDB.
• If you prefer, you can also use “SQL Shell

(psql)”, which is a terminal based program
where you can write and execute SQL syntax
in the command-line terminal.

Hans-Petter Halvorsen

https://www.halvorsen.blog

Getting Started
with PostgreSQL

Table of Contents

PostgreSQL

pgAdmin

Query Tool

Create new Database

Create new Tables

ERD Tool in pgAdmin
We can also use the ERD tool for creating the Tables from scratch

Here you can create Tables, create Columns with
Datatypes, create relationships, etc.

Entity Relationship
Diagram (ERD)

ERD Tool in pgAdmin

You can then
generate a SQL
Script:

ERD Diagram

SQL Table Script
CREATE TABLE student (
studentid serial PRIMARY KEY,
studentname varchar(50) NOT NULL,
averagegrade numeric(10,0)
);

CREATE TABLE course (
courseid serial PRIMARY KEY,
coursename varchar(50) NOT NULL
);

CREATE TABLE grade (
gradeid serial PRIMARY KEY,
courseid bigint NOT NULL REFERENCES course(courseid),
studentid bigint NOT NULL REFERENCES student(studentid),
grade numeric(10,0) NOT NULL
);

From the ERD Tool, we get a
SQL script like this. We can
also of course create this
script from scratch.

Create Tables from Script
We use the Query Tool:

Hans-Petter Halvorsen

https://www.halvorsen.blog

SQL Queries

Table of Contents

PostgreSQL

We have the following main SQL Queries:
• INSERT
• SELECT
• UPDATE
• DELETE
CRUD operations, CRUD = Create (Insert),
Read (Select), Update and Delete

INSERT Courses and Students

insert into course (coursename) values ('Mathematics');
insert into course (coursename) values ('Science');
insert into course (coursename) values ('Programming');

Let's create some default data in our tables:

insert into student (studentname) values ('Elvis Presley');
insert into student (studentname) values ('John Wayne');
insert into student (studentname) values ('John Statham');

Using the Query Tool

SELECT
select * from course select * from student

Insert Grades
insert into grade (courseid, studentid, grade) values (1, 1, 2.5);
insert into grade (courseid, studentid, grade) values (2, 1, 3.5);
insert into grade (courseid, studentid, grade) values (3, 1, 1.5);

Here student “Elvis Presley” (StudentId=1) gets the following grades in the different courses:
• “Mathematics” (CourseId=1) => Grade = 2.5
• “Science” (CourseId=2) => Grade = 3.5
• “Programming” (CourseId=3) => Grade = 1.5

select * from grade

UPDATE
update student set studentname = 'Donald Trump' where studentid = 1

You can also double-click to edit/update the
data directly in the “Data Output” panel.

DELETE
delete from tablename where column = ...

delete from student where studentid = 3

Example:

When using DELETE it is important to include a where statement, unless you want
to delete all the data in that table.

This query will only delete the specific student where studentid =3

delete from student where studentname = 'John Statham'

Or like this:

Hans-Petter Halvorsen

https://www.halvorsen.blog

Views

Table of Contents

PostgreSQL

Problem Description
But we want to get information like this:

But it is not possible because the information
is stored in 3 different tables.
=> The solution is to create and use a View.

We need to use 3 different SQL
queries to get information:
select * from course

select * from student

select * from grade

Views
• A View is a “virtual” table that can contain

data from multiple tables.
• Basically, a View is a SQL query that links 2

or more tables together making it possible
to get data from these tables in a single
query.

View Example
CREATE OR REPLACE VIEW studentdata
AS

SELECT
student.studentName,
course.courseName,
grade.grade
FROM student
INNER JOIN grade ON student.studentid = grade.studentid
INNER JOIN course ON grade.courseid = course.courseid

In a View we typically use
“INNER JOIN” to join information
stored in different Tables.

Create the View

Using the View

Views Queries Examples
You can use Views almost as you use Tables. Here are some basic examples:
select * from studentdata

select coursename, grade from studentdata where studentname = 'Elvis Presley'

select studentname, grade from studentdata where coursename = 'Mathematics'

select avg(grade) as avgrade from studentdata where studentname = 'Elvis Presley'

..

Hans-Petter Halvorsen

https://www.halvorsen.blog

Stored Procedures

Table of Contents

PostgreSQL

Problem Description

insert into GRADE (CourseId, StudentId, Grade) values (1, 1, 2.5)

insert into GRADE (CourseId, StudentId, Grade) values (2, 1, 3.5)

insert into GRADE (CourseId, StudentId, Grade) values (3, 1, 1.5)

To create/insert Grades we need to create and execute queries like this:

The “drawback” is that we need to remember the CourseIds and
the StudentIds, typically we only remember and want to use
their names.
=> The solution is to create and use a Stored Procedure.

Stored Procedures
• A Stored Procedure is very similar as a Method/Function

in C# or Python - it is a piece of code with SQL
commands that do a specific task – and you can reuse it.

• A Stored Procedure can have Input Arguments and Return
values (just like a Method/Function).

• It also adds a layer of security, because you can do a lot
of harm by creating the wrong queries. In that way you
can create a set of Stored Procedures that is well
implemented and tested properly.

• Stored Procedures can also prevent “SQL Injection” used
by “hackers”, etc.

Stored Procedure Example
CREATE OR REPLACE PROCEDURE createstudentgrade (

studentname_in varchar(50),
coursename_in varchar(50),
grade float

)
language plpgsql
AS $$

DECLARE
studentid_var integer;
courseid_var integer;

BEGIN
studentid_var = (select studentid from student where studentname = studentname_in);

courseid_var = (select courseid from course where coursename = coursename_in);

insert into grade (studentId, courseId, grade) values (studentid_var, courseid_var, grade);
END; $$

Input Arguments

Internal variables

Create the Stored Procedure

Using the Stored Procedure

call createstudentgrade('John Wayne', 'Mathematics', 1.0)

call createstudentgrade('John Wayne', 'Science’, 2.0)

call createstudentgrade('John Wayne', 'Programming’, 3.0)

insert into GRADE (CourseId, StudentId, Grade) values (1, 1, 2.5)

insert into GRADE (CourseId, StudentId, Grade) values (2, 1, 3.5)

insert into GRADE (CourseId, StudentId, Grade) values (3, 1, 1.5)

Using the Stored Procedure

Hans-Petter Halvorsen

https://www.halvorsen.blog

Triggers

Table of Contents

PostgreSQL

Problem Description

We want to automatically update the
“averagegrade” for each student when
inserting, updating or deleting Grades for a
specific Student in a specific Course.
=> The solution is to create and use a Trigger.

call createstudentgrade('John Wayne', 'Mathematics', 1.0)

call createstudentgrade('John Wayne', 'Science’, 2.0)

call createstudentgrade('John Wayne', 'Programming’, 3.0)

Triggers
• A Trigger is executed when you insert, update or delete

data in a Table specified in the Trigger.
• A trigger is a stored procedure in a database that

automatically invokes whenever a special event in the
database occurs.

• A Trigger is attached to a specific Table.
• You can use a Trigger to change data in the same table or

in other tables.
• We typically first make a Trigger Function then we make

the Trigger itself that is attached to a specific Table, this
Trigger then basically executes the Trigger Function.

Trigger Function Example
CREATE OR REPLACE FUNCTION calcavggrade_function()
RETURNS TRIGGER AS

$$

DECLARE
studentid_var int;
averagegrade_var float;

BEGIN
studentid_var := NEW.studentid;

averagegrade_var = (select AVG(grade) from grade where studentid = studentid_var);

update student set averagegrade = averagegrade_var where studentid = @studentid_var;

RETURN NULL;

END;
$$
LANGUAGE 'plpgsql';

Note! “NEW” is a temporarily
table containing the latest
inserted data, and it is very handy
to use inside a Trigger Function.

Trigger Example

CREATE OR REPLACE TRIGGER calcavggrade_trigger
AFTER INSERT ON grade
FOR EACH ROW
EXECUTE FUNCTION calcavggrade_function();

You need to specify
which Table the Trigger
shall be attached to.

The Trigger basically just call/execute the
Trigger Function calcavggrade_function()

Trigger Function + Trigger

Insert Grades
call createstudentgrade('John Statham', 'Mathematics', 2.0)

We use the Stored Procedure created earlier:

call createstudentgrade('John Statham', ‘Science’, 3.0)

call createstudentgrade('John Statham’, Programming’, 1.0)

Hans-Petter Halvorsen
University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

	Start
	Slide 1: PostgreSQL
	Slide 2: Contents

	Introduction
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: PostgreSQL
	Slide 6: Installation
	Slide 7: pgAdmin

	Getting Started
	Slide 8: Getting Started with PostgreSQL
	Slide 9: pgAdmin
	Slide 10: Query Tool
	Slide 11: Create new Database
	Slide 12: Create new Tables
	Slide 13: ERD Tool in pgAdmin
	Slide 14: ERD Tool in pgAdmin
	Slide 15: ERD Diagram
	Slide 16: SQL Table Script
	Slide 17: Create Tables from Script

	Queries
	Slide 18: SQL Queries
	Slide 19
	Slide 20: INSERT Courses and Students
	Slide 21: Using the Query Tool
	Slide 22: SELECT
	Slide 23: Insert Grades
	Slide 24: UPDATE
	Slide 25: DELETE

	Views
	Slide 26: Views
	Slide 27: Problem Description
	Slide 28: Views
	Slide 29: View Example
	Slide 30: Create the View
	Slide 31: Using the View
	Slide 32: Views Queries Examples

	Stored Procedures
	Slide 33: Stored Procedures
	Slide 34: Problem Description
	Slide 35: Stored Procedures
	Slide 36: Stored Procedure Example
	Slide 37: Create the Stored Procedure
	Slide 38: Using the Stored Procedure
	Slide 39: Using the Stored Procedure

	Triggers
	Slide 40: Triggers
	Slide 41: Problem Description
	Slide 42: Triggers
	Slide 43: Trigger Function Example
	Slide 44
	Slide 45: Trigger Example
	Slide 46: Trigger Function + Trigger
	Slide 47: Insert Grades

	Finished
	Slide 48

