https://www.halvorsen.blog

Arduino Control System

Hans-Petter Halvorsen

Table of Contents

- Introduction
- <u>Arduino</u>
- <u>Control System</u>
- PI Controller
- Process and Mathematical Model
- Lowpass Filter
- Final Implementation of Control System

https://www.halvorsen.blog

Introduction

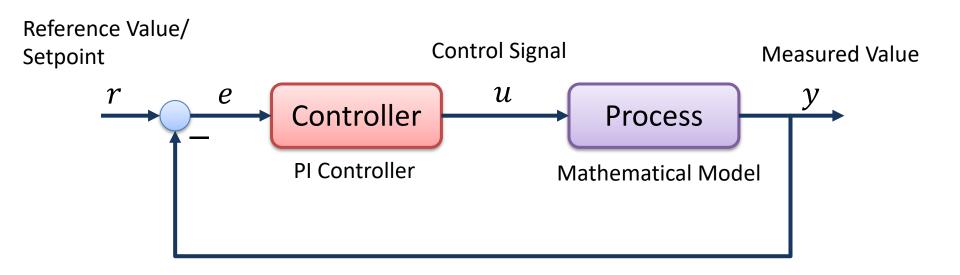

Hans-Petter Halvorsen

Table of Contents

Introduction

- We will create a basic Control System using Arduino
- This Tutorial uses Arduino UNO, but other Arduino devices may be used
- We will implement a simple **PI Controller**
- We will implement a Mathematical Model which we will simulate and control using the PI Controller
- Finally, we will also implement a Lowpass Filter

Arduino Control System

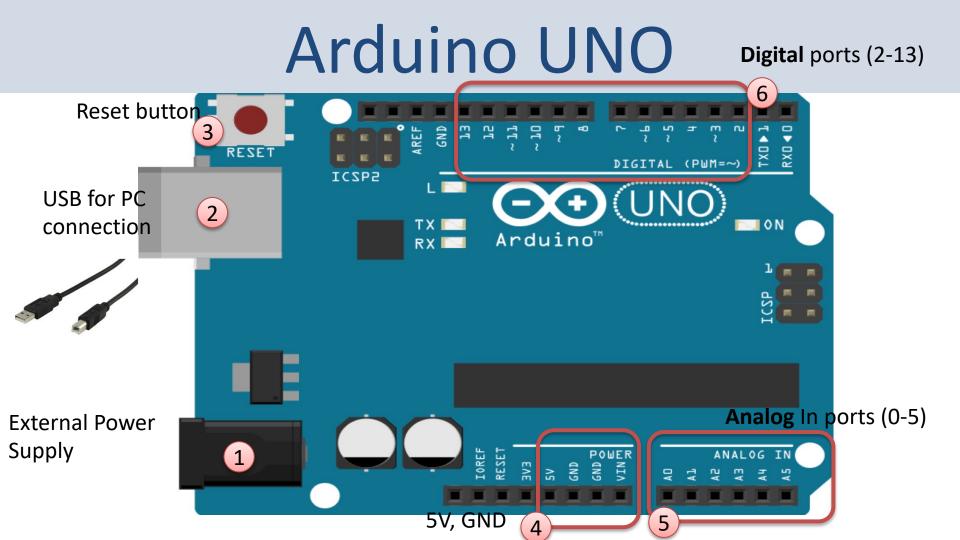
https://www.halvorsen.blog

Arduino

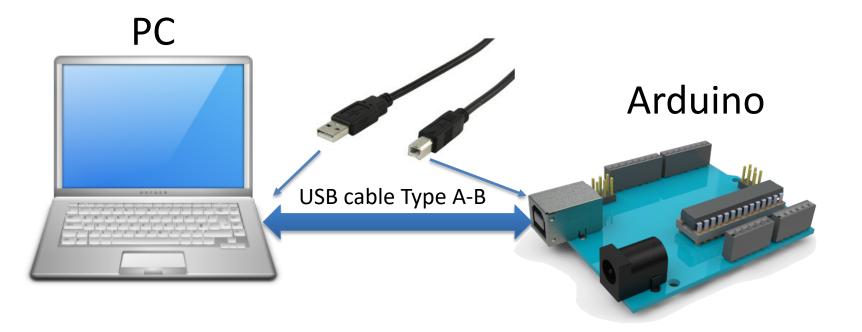
Hans-Petter Halvorsen

Table of Contents

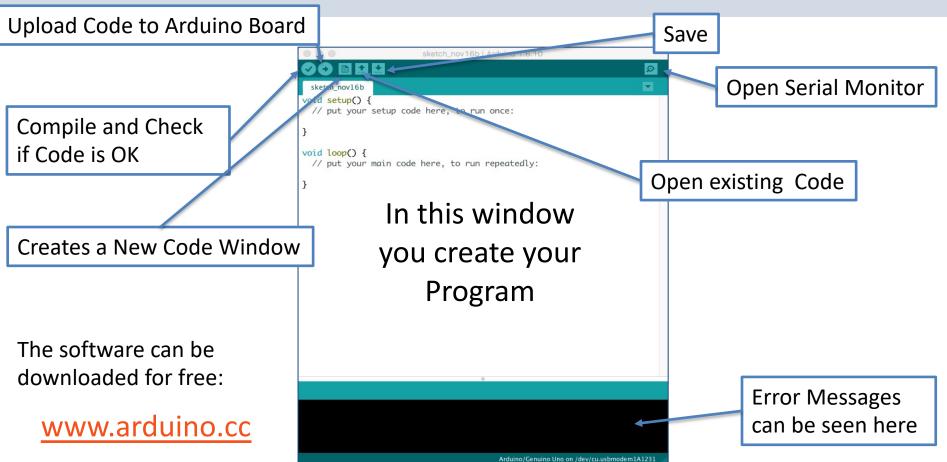
Arduino


- Arduino is an open-source electronics platform based on easy-to-use hardware and software.
- It's intended for anyone making interactive projects, from kids to grown-ups.
- You can connect different Sensors, like Temperature, etc.
- It is used a lots in Internet of Things projects
- Homepage: <u>https://www.arduino.cc</u>

Arduino


- Arduino is a Microcontroller
- Arduino is an open-source platform with Input/Output Pins (Digital In/Out, Analog In and PWM)
- Price about \$20
- Arduino Starter Kit ~\$40-80 with Cables, Wires, Resistors, Sensors, etc.

Arduino


- Lots of different Arduino boards exists
- There are different Arduino boards with different features and boards that are tailormade for different applications
- <u>https://www.arduino.cc/en/Main/Products</u>
- The most common is called "Arduino UNO"

Connect Arduino to your PC

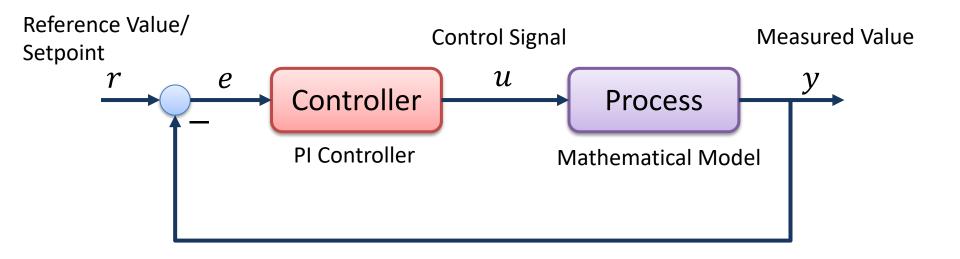
Arduino Software

Arduino Programs

All Arduino programs must follow the following main structure:

```
// Initialization, define variables, etc.
void setup()
      // Initialization
void loop()
      //Main Program
```

https://www.halvorsen.blog



Control System

Hans-Petter Halvorsen

Table of Contents

Arduino Control System

Code

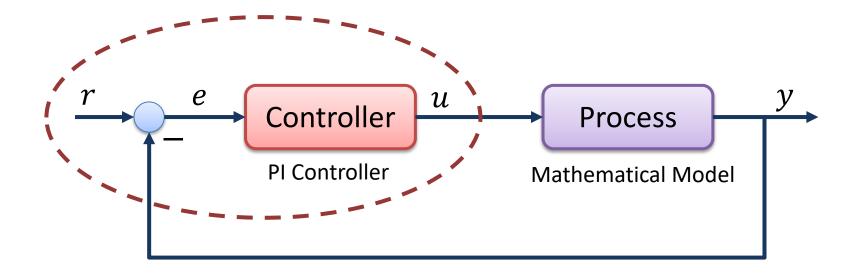
Here you see an example of the main code structure of your application

The Code for the PI Controller, the Process Model, etc. should be put into separate Functions

// Initialization void setup() // Initialization void loop()

PiController();
ProcessModel();
delay(wait)

https://www.halvorsen.blog



PI Controller

Hans-Petter Halvorsen

Table of Contents

Arduino Control System

PID Controller

$$u(t) = K_p e + \frac{K_p}{T_i} \int_0^t e d\tau + K_p T_d \dot{e}$$

Where u is the controller output and e is the control error:

$$e(t) = r(t) - y(t)$$

r is the Reference Signal or Set-point *y* is the Process value, i.e., the Measured value

Tuning Parameters:

- K_p Proportional Gain
- T_i Integral Time [sec.]
- T_d Derivative Time [sec.]

PI Controller

$$u(t) = K_p e + \frac{K_p}{T_i} \int_0^t e d\tau$$

Where u is the controller output and e is the control error:

$$e(t) = r(t) - y(t)$$

r is the Reference Signal or Set-point *y* is the Process value, i.e., the Measured value

Tuning Parameters:

- K_p Proportional Gain
- T_i Integral Time [sec.]

Discrete PI controller

We start with the continuous PI Controller:

$$u(t) = K_p e + \frac{K_p}{T_i} \int_0^t e d\tau$$

We derive both sides in order to remove the Integral:

$$\dot{u} = K_p \dot{e} + \frac{K_p}{T_i} e$$

We can use the Euler Backward Discretization method:

$$\dot{x} \approx \frac{x(k) - x(k-1)}{T_s}$$
 Wh

Where T_s is the Sampling Time

Then we get:

Finally, we get:

$$\frac{u_k - u_{k-1}}{T_s} = K_p \frac{e_k - e_{k-1}}{T_s} + \frac{K_p}{T_i} e_k$$

$$u_{k} = u_{k-1} + K_{p}(e_{k} - e_{k-1}) + \frac{K_{p}}{T_{i}}T_{s}e_{k}$$

Where $e_{k} = r_{k} - y_{k}$

PI Controller Code Example

float Ti = 20;

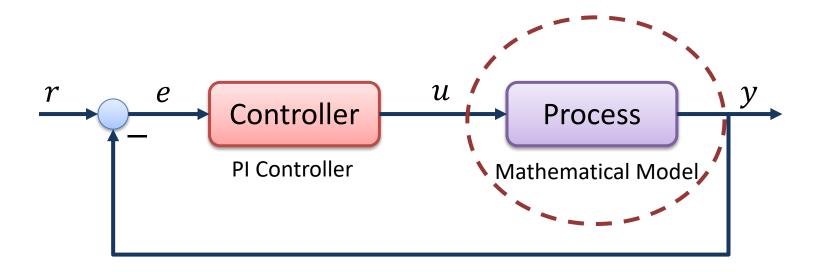
float u = 0;

. .

```
void PiController()
                                         Note! This is a very basic example
  u prev = u;
  e = r - Tout;
  u = u_prev + Kp*(e - e prev) + (Kp/Ti)*Ts*e;
  if (u < 0)
   u = 0;
  if (u > 5)
                                             //Controller
   u = 5;
                                             float r = 24;
                                             float Kp = 0.8;
```

The variables are in this basic example set as global variables on top in the Arduino program

https://www.halvorsen.blog



Process and Mathematical Model

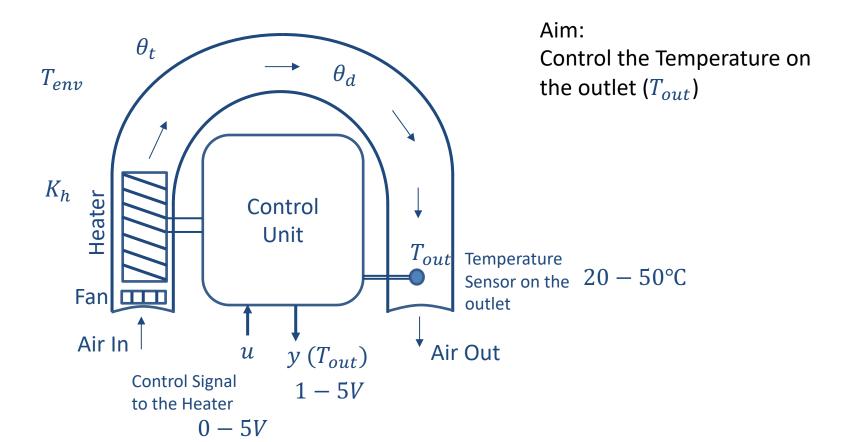

Hans-Petter Halvorsen

Table of Contents

Arduino Control System

Air Heater System

Air Heater System

We can, e.g., use the following values in the simulation:

 $\theta_t = 22 s$ $\theta_d = 2 s$ $K_h = 3.5 \frac{^{\circ}C}{V}$ $T_{env} = 21.5 ^{\circ}C$

Mathematical Model:

$$\dot{T}_{out} = \frac{1}{\theta_t} \{ -T_{out} + [K_h u(t - \theta_d) + T_{env}] \}$$

Discrete Air Heater

Continuous Model:

$$\dot{T}_{out} = \frac{1}{\theta_t} \{ -T_{out} + [K_h u(t - \theta_d) + T_{env}] \}$$

We can use e.g., the Euler Approximation in order to find the discrete Model:

$$\dot{x} \approx \frac{x(k+1) - x(k)}{T_s}$$
 T_s - Sampling Time $x(k)$ - Present value $x(k+1)$ - Next (future) value

The discrete Model will then be on the form:

$$x(k+1) = x(k) + \dots$$

We can then implement the discrete model in any programming language

Discrete Air Heater

We make a discrete version:

$$\dot{T}_{out} = \frac{1}{\theta_t} \{ -T_{out} + [K_h u(t - \theta_d) + T_{env}] \}$$

$$\frac{T_{out}(k+1) - T_{out}(k)}{T_s} = \frac{1}{\theta_t} \{ -T_{out}(k) + [K_h u(k - \theta_d) + T_{env}] \}$$

This gives the following discrete system:

$$T_{out}(k+1) = T_{out}(k) + \frac{T_s}{\theta_t} \{ -T_{out}(k) + [K_h u(k - \theta_d) + T_{env}] \}$$

The Time delay θ_d makes it a little complicated. We can simplify by setting $\theta_d = 0$

$$T_{out}(k+1) = T_{out}(k) + \frac{T_s}{\theta_t} \{-T_{out}(k) + [K_h u(k) + T_{env}]\}$$

Discrete Air Heater (Simplified)

Discrete version with Time delay $\theta_d = 0$

$$T_{out}(k+1) = T_{out}(k) + \frac{T_s}{\theta_t} \{ -T_{out}(k) + [K_h u(k) + T_{env}] \}$$

We can use the following values in the simulation:

$$\theta_t = 22s$$

 $K_h = 3.5 \frac{^{\circ C}}{v}$
 $T_{env} = 21.5^{\circ C}$

We can set the Sampling Time $T_s = 0.1s$

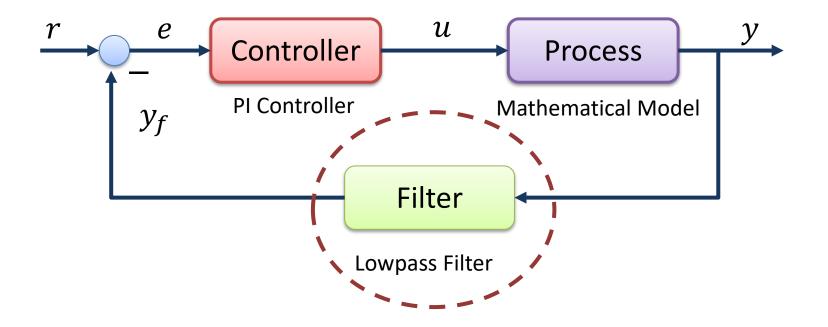
Process Model

```
void AirHeaterModel()
{
   Tout_prev = Tout;
   Tout = Tout_prev + (Ts/theta_t) * (-Tout_prev + Kh*u + Tenv);
}
```

The variables are in this basic example set as global variables on top in the Arduino program

```
// Air Heater Model
float Kh = 3.5;
float theta_t = 22;
float theta_d = 2;
float Tenv = 21.5;
float Tout = Tenv;
float Tout_prev = Tenv;
```

https://www.halvorsen.blog



Lowpass Filter

Hans-Petter Halvorsen

Table of Contents

Arduino Control System

Lowpass Filter

The Transfer Function for a Low-pass filter is given by:

$$H(s) = \frac{y_f(s)}{y(s)} = \frac{1}{T_f s + 1}$$

Where:

y is the Signal from the DAQ device (that contains noise) y_f is the Filtered Signal T_f is the Filter Time Constant

Why Lowpass Filter?

- In Measurement systems and Control Systems we typically need to deal with noise
- Noise is something we typically don't want
- Lowpass Filters are used to remove noise from the measured signals
- Noise is high-frequency signals
- A Lowpass Filter make sure the low frequencies pass (the measurements) and removes the high frequencies (the noise)

Discrete Lowpass Filter

Lowpass Filter:

$$H(s) = \frac{y_f(s)}{y(s)} = \frac{1}{T_f s + 1}$$

We can find the Differential Equation for this filter using Inverse Laplace:

$$T_f \dot{y}_f + y_f = y$$

We use Euler Backward method: $\dot{x} \approx \frac{x(k) - x(k-1)}{T_s}$

Then we get:

$$T_f \ \frac{y_f(k) - y_f(k-1)}{T_s} + y_f(k) = y(k)$$

This gives: $y_f(k) = \frac{T_f}{T_f + T_s} y_f(k-1) + \frac{T_s}{T_f + T_s} y(k)$

We define:

$$\frac{T_s}{T_f + T_s} \equiv a$$

Finally, we get the following discrete version of the Lowpass Filter:

$$y_f(k) = (1-a)y_f(k-1) + ay(k)$$

This equation can easily be implemented using the Arduino software or another programming language

Golden rule for selecting proper T_f :

$$T_s \le \frac{T_f}{5} \leftrightarrow T_f \ge 5T_s$$

Lowpass Filter

```
void LowPassFilter()
{
    y = Tout;
    yf = (1-a)*yf_prev + a*y;
    yf_prev = yf;
    Tout = yf;
}
```

The variables are in this basic example set as global variables on top in the Arduino program

Note! This is a very basic example

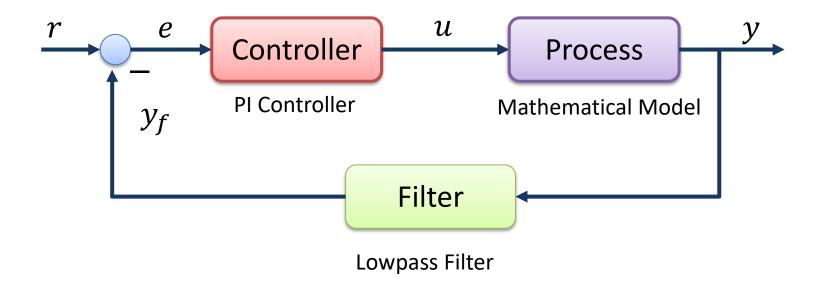
```
//Filter
float Tf = 5*Ts;
float a = Ts/(Tf+Ts);
float y;
float yf;
float yf_prev = Tout;
```

https://www.halvorsen.blog

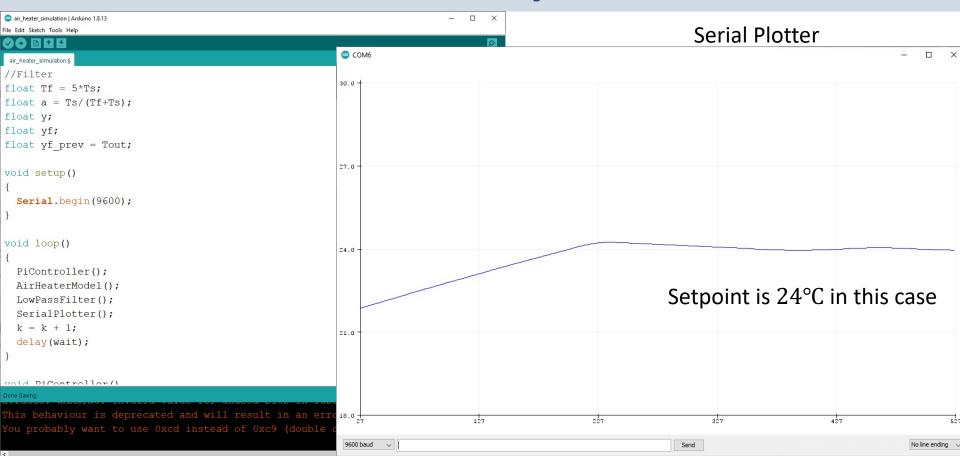
Final Control System Implementation

Hans-Petter Halvorsen

Table of Contents


Code

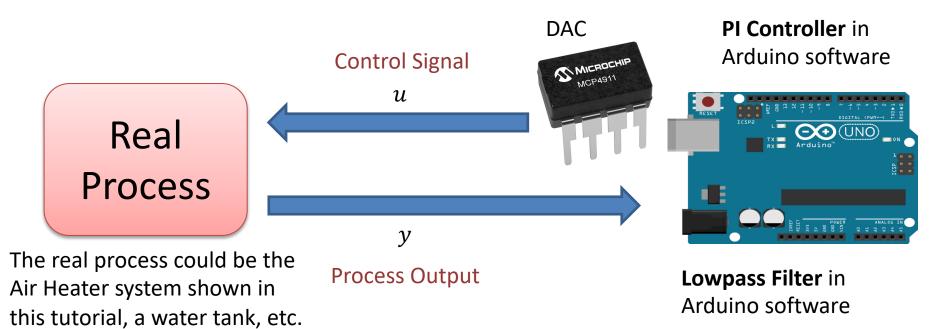
Here you see an example of the main code structure of your application


The Code for the PI Controller, the Process Model and Lowpass Filter have been put into separate Functions

// Initialization void setup() // Initialization . . void loop() PiController(); ProcessModel(); LowPassFilter(); delay(wait)

Arduino Control System

Control System



Summary

- We have made a simple Control System with Arduino.
- The Code Examples are very simplified and lots of improvements can be made, e.g., reduce the use of global variables, etc.
- You should also structure the code into Classes and make an Arduino Library for the general PI and Lowpass Functions.
- You can add features for storing the data to either an SD card, to a cloud service, etc.
- The Arduino has no Graphical User Interface (GUI), so the user cannot set Setpoint, Kp, Ti, etc. during execution. Here you can use a Cloud Service, create a Web Application, etc.
- The final step is to use Arduino to Control the Real System and not only a simulation where the mathematical model is used.

Real Control System Example

Arduino has NO Analog output pins, so an external DAC is needed

Arduino has Analog Input pins so reading the process value is no problem

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

