
Arduino
Control System

Hans-Petter Halvorsen

https://www.halvorsen.blog

• Introduction
• Arduino
• Control System
• PI Controller
• Process and Mathematical Model
• Lowpass Filter
• Final Implementation of Control System

Table of Contents

Introduction

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

• We will create a basic Control System using
Arduino

• This Tutorial uses Arduino UNO, but other
Arduino devices may be used

• We will implement a simple PI Controller
• We will implement a Mathematical Model

which we will simulate and control using the PI
Controller

• Finally, we will also implement a Lowpass Filter

Introduction

Arduino Control System

Controller Process
𝑟 𝑢𝑒

−
𝑦

Mathematical ModelPI Controller

Reference Value/
Setpoint Measured ValueControl Signal

Arduino

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

• Arduino is an open-source electronics platform
based on easy-to-use hardware and software.

• It's intended for anyone making interactive projects,
from kids to grown-ups.

• You can connect different Sensors, like Temperature,
etc.

• It is used a lots in Internet of Things projects
• Homepage:
https://www.arduino.cc

Arduino

https://www.arduino.cc/

Arduino
• Arduino is a Microcontroller
• Arduino is an open-source platform

with Input/Output Pins (Digital
In/Out, Analog In and PWM)
• Price about $20
• Arduino Starter Kit ~$40-80

with Cables, Wires, Resistors, Sensors, etc.

• Lots of different Arduino boards exists
• There are different Arduino boards with

different features and boards that are
tailormade for different applications
• https://www.arduino.cc/en/Main/Products
• The most common is called “Arduino UNO”

Arduino

https://www.arduino.cc/en/Main/Products

Arduino UNO

1

2

3

External Power
Supply

USB for PC
connection

Digital ports (2-13)

Analog In ports (0-5)

Reset button

4 5

6

5V, GND

Connect Arduino to your PC

USB cable Type A-B

PC

Arduino

Arduino Software

In this window
you create your

Program

Compile and Check
if Code is OK

Creates a New Code Window

Open existing Code

Upload Code to Arduino Board Save

Open Serial Monitor

Error Messages
can be seen herewww.arduino.cc

The software can be
downloaded for free:

http://www.arduino.cc/

Arduino Programs
// Initialization, define variables, etc.

void setup()
{

// Initialization
...

}

void loop()
{

//Main Program
...

}

All Arduino programs must follow the following main structure:

Control System

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Arduino Control System

Controller Process
𝑟 𝑢𝑒

−
𝑦

Mathematical ModelPI Controller

Reference Value/
Setpoint

Measured ValueControl Signal

Code // Initialization
..

void setup()
{

// Initialization
..

}

void loop()
{
PiController();
ProcessModel();
delay(wait)

}

Here you see an example of the
main code structure of your
application

The Code for the PI Controller,
the Process Model, etc. should
be put into separate Functions

PI Controller

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Arduino Control System

Controller Process
𝑟 𝑢𝑒

−
𝑦

Mathematical ModelPI Controller

PID Controller

Tuning Parameters:

𝐾!
𝑇"
𝑇#

Where 𝑢 is the controller output and 𝑒 is the
control error:

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)

𝑟 is the Reference Signal or Set-point
𝑦 is the Process value, i.e., the Measured value

𝑢 𝑡 = 𝐾#𝑒 +
𝐾#
𝑇$
(
%

&
𝑒𝑑𝜏 + 𝐾#𝑇'�̇�

Proportional Gain

Integral Time [sec.]

Derivative Time [sec.]

PI Controller

Tuning Parameters:

𝐾!
𝑇"

Where 𝑢 is the controller output and 𝑒 is the
control error:

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)

𝑟 is the Reference Signal or Set-point
𝑦 is the Process value, i.e., the Measured value

𝑢 𝑡 = 𝐾#𝑒 +
𝐾#
𝑇$
(
%

&
𝑒𝑑𝜏

Proportional Gain

Integral Time [sec.]

Discrete PI controller

𝑢 𝑡 = 𝐾!𝑒 +
𝐾!
𝑇"
*
#

$
𝑒𝑑𝜏

We start with the continuous PI Controller:

�̇� ≈
𝑥 𝑘 − 𝑥 𝑘 − 1

𝑇%

We can use the Euler Backward Discretization method:

Where 𝑇! is the Sampling Time

Then we get:

𝑢& − 𝑢&'(
𝑇%

= 𝐾!
𝑒& − 𝑒&'(

𝑇%
+
𝐾!
𝑇"
𝑒&

We derive both sides in order to remove
the Integral:

�̇� = 𝐾"�̇� +
𝐾"
𝑇#
𝑒

Finally, we get:

𝑢(= 𝑢()* + 𝐾+ 𝑒(− 𝑒()* +
𝐾+
𝑇,
𝑇-𝑒(

Where 𝑒$ = 𝑟$ − 𝑦$

PI Controller Code Example
void PiController()
{
u_prev = u;
e = r - Tout;
u = u_prev + Kp*(e - e_prev) + (Kp/Ti)*Ts*e;
if (u < 0)
u = 0;

if (u > 5)
u = 5;

}

The variables are in this basic example set as global variables
on top in the Arduino program

//Controller
float r = 24;
float Kp = 0.8;
float Ti = 20;
float u = 0;
..

Note! This is a very basic example

Process and
Mathematical Model

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Arduino Control System

Controller Process
𝑟 𝑢𝑒

−
𝑦

Mathematical ModelPI Controller

Air Heater System

Air In Air Out

Control
Unit

Temperature
Sensor on the
outlet

𝑇%&'He
at

er

Fan

𝐾(

𝑇)*+ 𝜃,
𝜃'

𝑢
Control Signal
to the Heater

𝑦 (𝑇%&')

Aim:
Control the Temperature on
the outlet (𝑇%&')

0 − 5𝑉

20 − 50℃

1 − 5𝑉

Air Heater System

�̇�:;< =
1
𝜃<

−𝑇:;< + 𝐾=𝑢 𝑡 − 𝜃> + 𝑇?@AMathematical Model:

𝜃$ = 22 𝑠

𝜃) = 2 𝑠

𝐾* = 3.5
℃
𝑉

𝑇+,- = 21.5 ℃

We can, e.g., use the
following values in the
simulation:

Discrete Air Heater
�̇�:;< =

1
𝜃<

−𝑇:;< + 𝐾=𝑢 𝑡 − 𝜃> + 𝑇?@A

�̇� ≈
𝑥 𝑘 + 1 − 𝑥 𝑘

𝑇%

We can use e.g., the Euler Approximation in order to find the discrete Model:

Continuous Model:

𝑇! - Sampling Time 𝑥 𝑘 - Present value

𝑥 𝑘 + 1 - Next (future) value

The discrete Model will then be on the form:

𝑥 𝑘 + 1 = 𝑥 𝑘 + …

We can then implement the discrete model in any programming language

Discrete Air Heater
We make a discrete version: �̇�!"# =

1
𝜃#

−𝑇!"# + 𝐾$𝑢 𝑡 − 𝜃% + 𝑇&'(

𝑇%&' 𝑘 + 1 − 𝑇%&'(𝑘)
𝑇!

=
1
𝜃'

−𝑇%&'(𝑘) + 𝐾(𝑢 𝑘 − 𝜃, + 𝑇)*+

𝑇%&' 𝑘 + 1 = 𝑇%&' 𝑘 +
𝑇!
𝜃'

−𝑇%&'(𝑘) + 𝐾(𝑢 𝑘 − 𝜃, + 𝑇)*+

This gives the following discrete system:

The Time delay 𝜃, makes it a little complicated. We can simplify by setting 𝜃, = 0

𝑇%&' 𝑘 + 1 = 𝑇%&' 𝑘 +
𝑇!
𝜃'

−𝑇%&'(𝑘) + 𝐾(𝑢 𝑘 + 𝑇)*+

Discrete Air Heater (Simplified)
Discrete version with Time delay 𝜃> = 0

𝑇:;< 𝑘 + 1 = 𝑇:;< 𝑘 +
𝑇-
𝜃<

−𝑇:;<(𝑘) + 𝐾=𝑢 𝑘 + 𝑇?@A

𝜃< = 22𝑠
𝐾= = 3.5 ℃E
𝑇?@A = 21.5℃

We can set the Sampling Time 𝑇- = 0.1𝑠

We can use the following values in the simulation:

Process Model
void AirHeaterModel()
{
Tout_prev = Tout;
Tout = Tout_prev + (Ts/theta_t) * (-Tout_prev + Kh*u + Tenv);

}

The variables are in this basic example set as global variables on top in the Arduino program
// Air Heater Model
float Kh = 3.5;
float theta_t = 22;
float theta_d = 2;
float Tenv = 21.5;
float Tout = Tenv;
float Tout_prev = Tenv;

Lowpass Filter

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Arduino Control System

Controller Process
𝑟 𝑢𝑒

−
𝑦

Mathematical ModelPI Controller

Filter

Lowpass Filter

𝑦F

Lowpass Filter
The Transfer Function for a Low-pass filter is given by:

𝐻 𝑠 =
𝑦F(𝑠)
𝑦(𝑠)

=
1

𝑇F𝑠 + 1

Why Lowpass Filter?
• In Measurement systems and Control Systems we typically need to deal with noise
• Noise is something we typically don’t want
• Lowpass Filters are used to remove noise from the measured signals
• Noise is high-frequency signals
• A Lowpass Filter make sure the low frequencies pass (the measurements) and removes

the high frequencies (the noise)

Where:
𝑦 is the Signal from the DAQ device
(that contains noise)
𝑦- is the Filtered Signal
𝑇- is the Filter Time Constant

Discrete Lowpass Filter
Lowpass Filter:

𝐻 𝑠 =
𝑦-(𝑠)
𝑦(𝑠) =

1
𝑇-𝑠 + 1

We can find the Differential Equation for this filter
using Inverse Laplace:

𝑇-�̇�- + 𝑦- = 𝑦

We use Euler Backward method: �̇� ≈ . $ /. $/0
1!

Then we get:

𝑇-
𝑦- 𝑘 − 𝑦- 𝑘 − 1

𝑇!
+ 𝑦- 𝑘 = 𝑦 𝑘

This gives: 𝑦- 𝑘 = 1"
1"21!

𝑦- 𝑘 − 1 + 1!
1"21!

𝑦 𝑘

We define:
𝑇!

𝑇- + 𝑇!
≡ 𝑎

Finally, we get the following discrete
version of the Lowpass Filter:

𝑦. 𝑘 = 1 − 𝑎 𝑦. 𝑘 − 1 + 𝑎𝑦 𝑘
This equation can easily be implemented using the
Arduino software or another programming language

𝑇! ≤
𝑇-
5 ↔ 𝑇- ≥ 5𝑇!

Golden rule for selecting proper 𝑇-:

Lowpass Filter
void LowPassFilter()
{
y = Tout;
yf = (1-a)*yf_prev + a*y;
yf_prev = yf;
Tout = yf;

}

The variables are in this basic example set as
global variables on top in the Arduino program

//Filter
float Tf = 5*Ts;
float a = Ts/(Tf+Ts);
float y;
float yf;
float yf_prev = Tout;

Note! This is a very basic example

Final Control System
Implementation

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Code // Initialization
..

void setup()
{

// Initialization
..

}

void loop()
{
PiController();
ProcessModel();
LowPassFilter();
delay(wait)

}

Here you see an example of the
main code structure of your
application

The Code for the PI Controller,
the Process Model and
Lowpass Filter have been put
into separate Functions

Arduino Control System

Controller Process
𝑟 𝑢𝑒

−
𝑦

Mathematical ModelPI Controller

Filter

Lowpass Filter

𝑦F

Control System
Serial Plotter

Setpoint is 24℃ in this case

• We have made a simple Control System with Arduino.
• The Code Examples are very simplified and lots of improvements can be

made, e.g., reduce the use of global variables, etc.
• You should also structure the code into Classes and make an Arduino Library

for the general PI and Lowpass Functions.
• You can add features for storing the data to either an SD card, to a cloud

service, etc.
• The Arduino has no Graphical User Interface (GUI), so the user cannot set

Setpoint, Kp, Ti, etc. during execution. Here you can use a Cloud Service,
create a Web Application, etc.

• The final step is to use Arduino to Control the Real System and not only a
simulation where the mathematical model is used.

Summary

Real Control System Example

Real
Process

𝑦

𝑢
Control Signal

Process Output

DAC PI Controller in
Arduino software

Lowpass Filter in
Arduino software

Arduino has Analog Input pins so reading the process value is no problem

Arduino has NO Analog output pins, so an external DAC is needed

The real process could be the
Air Heater system shown in
this tutorial, a water tank, etc.

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

