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Preface	
This	document	explains	the	basic	concepts	of	using	LabVIEW	for	Control	and	Simulation	
purposes.	

	

For	more	information	about	LabVIEW,	visit	my	Blog:	https://www.halvorsen.blog.	 	

	

You	need	the	following	software:	

• LabVIEW	
• LabVIEW	Control	Design	and	Simulation	Module	
• LabVIEW	MathScript	RT	Module	
• NI-DAQmx	
• NI	Measurement	&	Automation	Explorer	
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1 Introduction	to	LabVIEW	
LabVIEW	(short	for	Laboratory	Virtual	Instrumentation	Engineering	Workbench)	is	a	
platform	and	development	environment	for	a	visual	programming	language	from	National	
Instruments.	The	graphical	language	is	named	"G".	Originally	released	for	the	Apple	
Macintosh	in	1986,	LabVIEW	is	commonly	used	for	data	acquisition,	instrument	control,	and	
industrial	automation	on	a	variety	of	platforms	including	Microsoft	Windows,	various	flavors	
of	Linux,	and	Mac	OS	X.	Visit	National	Instruments	at	www.ni.com.	

The	code	files	have	the	extension	“.vi”,	which	is	an	abbreviation	for	“Virtual	Instrument”.	
LabVIEW	offers	lots	of	additional	Add-Ons	and	Toolkits.	

1.1 Dataflow	programming	
The	programming	language	used	in	LabVIEW,	also	referred	to	as	G,	is	a	dataflow	
programming	language.	Execution	is	determined	by	the	structure	of	a	graphical	block	
diagram	(the	LV-source	code)	on	which	the	programmer	connects	different	function-nodes	
by	drawing	wires.	These	wires	propagate	variables	and	any	node	can	execute	as	soon	as	all	
its	input	data	become	available.	Since	this	might	be	the	case	for	multiple	nodes	
simultaneously,	G	is	inherently	capable	of	parallel	execution.	Multi-processing	and	multi-
threading	hardware	is	automatically	exploited	by	the	built-in	scheduler,	which	multiplexes	
multiple	OS	threads	over	the	nodes	ready	for	execution.	

1.2 	 Graphical	programming	
LabVIEW	ties	the	creation	of	user	interfaces	(called	front	panels)	into	the	development	cycle.	
LabVIEW	programs/subroutines	are	called	virtual	instruments	(VIs).	Each	VI	has	three	
components:	a	block	diagram,	a	front	panel,	and	a	connector	panel.	The	last	is	used	to	
represent	the	VI	in	the	block	diagrams	of	other,	calling	VIs.	Controls	and	indicators	on	the	
front	panel	allow	an	operator	to	input	data	into	or	extract	data	from	a	running	virtual	
instrument.	However,	the	front	panel	can	also	serve	as	a	programmatic	interface.	Thus	a	
virtual	instrument	can	either	be	run	as	a	program,	with	the	front	panel	serving	as	a	user	
interface,	or,	when	dropped	as	a	node	onto	the	block	diagram,	the	front	panel	defines	the	
inputs	and	outputs	for	the	given	node	through	the	connector	pane.	This	implies	each	VI	can	
be	easily	tested	before	being	embedded	as	a	subroutine	into	a	larger	program.	
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The	graphical	approach	also	allows	non-programmers	to	build	programs	simply	by	dragging	
and	dropping	virtual	representations	of	lab	equipment	with	which	they	are	already	familiar.	
The	LabVIEW	programming	environment,	with	the	included	examples	and	the	
documentation,	makes	it	simple	to	create	small	applications.	This	is	a	benefit	on	one	side,	
but	there	is	also	a	certain	danger	of	underestimating	the	expertise	needed	for	good	quality	
"G"	programming.	For	complex	algorithms	or	large-scale	code,	it	is	important	that	the	
programmer	possess	an	extensive	knowledge	of	the	special	LabVIEW	syntax	and	the	
topology	of	its	memory	management.	The	most	advanced	LabVIEW	development	systems	
offer	the	possibility	of	building	stand-alone	applications.	Furthermore,	it	is	possible	to	create	
distributed	applications,	which	communicate	by	a	client/server	scheme,	and	are	therefore	
easier	to	implement	due	to	the	inherently	parallel	nature	of	G-code.	

1.3 Benefits	
One	benefit	of	LabVIEW	over	other	development	environments	is	the	extensive	support	for	
accessing	instrumentation	hardware.	Drivers	and	abstraction	layers	for	many	different	types	
of	instruments	and	buses	are	included	or	are	available	for	inclusion.	These	present	
themselves	as	graphical	nodes.	The	abstraction	layers	offer	standard	software	interfaces	to	
communicate	with	hardware	devices.	The	provided	driver	interfaces	save	program	
development	time.	The	sales	pitch	of	National	Instruments	is,	therefore,	that	even	people	
with	limited	coding	experience	can	write	programs	and	deploy	test	solutions	in	a	reduced	
time	frame	when	compared	to	more	conventional	or	competing	systems.	A	new	hardware	
driver	topology	(DAQmxBase),	which	consists	mainly	of	G-coded	components	with	only	a	
few	register	calls	through	NI	Measurement	Hardware	DDK	(Driver	Development	Kit)	
functions,	provides	platform	independent	hardware	access	to	numerous	data	acquisition	
and	instrumentation	devices.	The	DAQmxBase	driver	is	available	for	LabVIEW	on	Windows,	
Mac	OS	X	and	Linux	platforms.	
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2 Introduction	to	Control	and	
Simulation	

Control	design	is	a	process	that	involves	developing	mathematical	models	that	describe	a	
physical	system,	analyzing	the	models	to	learn	about	their	dynamic	characteristics,	and	
creating	a	controller	to	achieve	certain	dynamic	characteristics.	

Simulation	is	a	process	that	involves	using	software	to	recreate	and	analyze	the	behavior	of	
dynamic	systems.	You	use	the	simulation	process	to	lower	product	development	costs	by	
accelerating	product	development.	You	also	use	the	simulation	process	to	provide	insight	
into	the	behavior	of	dynamic	systems	you	cannot	replicate	conveniently	in	the	laboratory.	

Below	we	see	a	closed-loop	feedback	control	system:	
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3 Control	and	Simulation	in	
LabVIEW	

LabVIEW	has	several	additional	modules	and	Toolkits	for	Control	and	Simulation	purposes,	
e.g.,	“LabVIEW	Control	Design	and	Simulation	Module”,	“LabVIEW	PID	and	Fuzzy	Logic	
Toolkit”,	“LabVIEW	System	Identification	Toolkit”	and	“LabVIEW	Simulation	Interface	
Toolkit”.	LabVIEW	MathScript	is	also	useful	for	Control	Design	and	Simulation.	

• LabVIEW	Control	Design	and	Simulation	Module	
• LabVIEW	PID	and	Fuzzy	Logic	Toolkit	
• LabVIEW	System	Identification	Toolkit	
• LabVIEW	Simulation	Interface	Toolkit	

This	tutorial	will	focus	on	the	main	aspects	in	these	modules	and	toolkits.	

All	VIs	related	to	these	modules	and	toolkits	are	placed	in	the	Control	Design	and	Simulation	
Toolkit:	

	

3.1 LabVIEW	Control	Design	and	Simulation	
Module	

With	LabVIEW	Control	Design	and	Simulation	Module	you	can	construct	plant	and	control	
models	using	transfer	function,	state-space,	or	zero-pole-gain.	Analyze	system	performance	
with	tools	such	as	step	response,	pole-zero	maps,	and	Bode	plots.	Simulate	linear,	nonlinear,	
and	discrete	systems	with	a	wide	option	of	solvers.	With	the	NI	LabVIEW	Control	Design	and	



5	 	 Control	and	Simulation	in	LabVIEW	 	

Tutorial: Control and Simulation in LabVIEW 

Simulation	Module,	you	can	analyze	open-loop	model	behavior,	design	closed-loop	
controllers,	simulate	online	and	offline	systems,	and	conduct	physical	implementations.	 	

3.1.1 Simulation	

The	Simulation	palette	in	LabVIEW:	

	

The	main	features	in	the	Simulation	palette	are:	

• Control	and	Simulation	Loop	-	You	must	place	all	Simulation	functions	within	a	
Control	&	Simulation	Loop	or	in	a	simulation	subsystem.	

• Continuous	Linear	Systems	Functions	-	Use	the	Continuous	Linear	Systems	functions	
to	represent	continuous	linear	systems	of	differential	equations	on	the	simulation	
diagram.	

• Signal	Arithmetic	Functions	-	Use	the	Signal	Arithmetic	functions	to	perform	basic	
arithmetic	operations	on	signals	in	a	simulation	system.	

3.1.2 Control	Design	

The	Control	Design	palette	in	LabVIEW:	
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3.2 LabVIEW	PID	and	Fuzzy	Logic	Toolkit	
The	NI	LabVIEW	PID	and	Fuzzy	Logic	Toolkit	add	control	algorithms	to	LabVIEW.	By	
combining	the	PID	and	fuzzy	logic	control	functions	in	this	toolkit	with	the	math	and	logic	
functions	in	LabVIEW	software,	you	can	quickly	develop	programs	for	automated	control.	
You	may	integrate	these	control	tools	with	the	power	of	data	acquisition.	

3.2.1 PID	Control	

The	PID	palette	in	LabVIEW:	

	

3.2.2 Fuzzy	Logic	

The	Fuzzy	Logic	palette	in	LabVIEW:	
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3.3 LabVIEW	System	Identification	Toolkit	
The	“LabVIEW	System	Identification	Toolkit”	combines	data	acquisition	tools	with	system	
identification	algorithms	for	plant	modeling.	You	can	use	the	LabVIEW	System	Identification	
Toolkit	to	find	empirical	models	from	real	plant	stimulus-response	information.	

The	System	Identification	palette	in	LabVIEW:	
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4 Simulation	
Simulation	is	a	process	that	involves	using	software	to	recreate	and	analyze	the	behavior	of	
dynamic	systems.	You	use	the	simulation	process	to	lower	product	development	costs	by	
accelerating	product	development.	You	also	use	the	simulation	process	to	provide	insight	
into	the	behavior	of	dynamic	systems	you	cannot	replicate	conveniently	in	the	laboratory.	
For	example,	simulating	a	jet	engine	saves	time,	labor,	and	money	compared	to	building,	
testing,	and	rebuilding	an	actual	jet	engine.	You	can	use	the	LabVIEW	Control	Design	and	
Simulation	Module	to	simulate	a	dynamic	system	or	a	component	of	a	dynamic	system.	For	
example,	you	can	simulate	only	the	plant	while	using	hardware	for	the	controller,	actuators,	
and	sensors	(Hardware-in-the-loop	Simulation).	

A	dynamic	system	model	is	a	differential	or	difference	equation	that	describes	the	behavior	
of	the	dynamic	system.	

4.1 Simulation	in	LabVIEW	
Use	the	Simulation	VIs	and	functions	to	create	simulation	applications	in	LabVIEW.	In	the	
Control	Design	&	Simulation	palette	we	have	the	Simulation	Sub	palette:	

	

Below	we	see	the	Simulation	Sub	palette:	
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Note!	All	the	“Blocks”	in	the	Simulation	palette	are	not	SubVIs,	i.e.,	we	cannot	double-click	
on	them	and	open	the	Block	Diagram	because	they	have	none.	All	the	Blocks	in	the	
Simulation	palette	must	be	used	inside	the	Control	and	Simulation	Loop	(explained	below).	

Control	and	Simulation	Loop:	

In	the	“Simulation”	Sub	palette	we	have	the	“Control	and	Simulation	Loop”	which	is	very	
useful	in	simulations:	

	

You	must	place	all	Simulation	functions	within	a	Control	&	Simulation	Loop	or	in	a	simulation	
subsystem.	You	also	can	place	simulation	subsystems	within	a	Control	&	Simulation	Loop	or	
another	simulation	subsystem,	or	you	can	place	simulation	subsystems	on	a	block	diagram	
outside	a	Control	&	Simulation	Loop	or	run	the	simulation	subsystems	as	stand-alone	VIs.	
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The	Control	&	Simulation	Loop	has	an	Input	Node	(upper	left	corner)	and	an	Output	Node	
(upper	right	corner).	Use	the	Input	Node	to	configure	simulation	parameters	
programmatically.	You	also	can	configure	these	parameters	interactively	using	the	Configure	
Simulation	Parameters	dialog	box.	Access	this	dialog	box	by	double-clicking	the	Input	Node	
or	by	right-clicking	the	border	and	selecting	Configure	Simulation	Parameters	from	the	
shortcut	menu.	

Configuration:	

When	you	place	these	blocks	on	the	diagram	you	may	double-click	or	right-click	and	then	
select	“Configuration…”	 	 	

Example:	Configuration	Dialog	box	

	 For	the	“Transfer	Function”	(Simulation	→	Continuous	Linear	Systems)	block	we	have	
the	following	Configuration	window:	 	
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All	the	different	blocks	have	their	own	different	Configuration	window.	

	

In	the	Parameter	source	you	may	select	between:	

• Configuration	Dialog	Box	
• Terminal	

If	you	select	“Configuration	Dialog	Box”	you	enter	the	configuration	in	the	Configuration	
window	like	we	see	above,	while	if	you	select	“Terminal”	that	specific	configuration	is	set	
from	the	Block	Diagram	like	this:	

	

Icon	Style:	

When	you	place	the	block	on	the	block	diagram	you	may	select	how	that	should	appear.	
Right-click	on	the	block/icon	and	select	“Icon	Style”:	
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Example:	Icon	Style	

	 For	the	“Transfer	Function”	(Simulation	→	Continuous	Linear	Systems)	block	we	have	
the	following	different	icon	styles:	 	

Static:	

	 	

Dynamic:	

	 	

Text	Only:	

	 	

Express:	

	

We	see	for	the	Dynamic	and	Express	styles	that	the	appearance	changes	according	to	
configuration	parameters	we	set.	
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I	personally	prefer	the	“static”	icon	style	because	it	does	not	require	lots	of	space	on	the	
diagram.	

4.2 Simulation	Subsystem	
You	may	create	a	Simulation	Subsystem	(File	→	New…):	

	

The	Simulation	Subsystem	is	very	useful	when	dealing	with	larger	simulation	systems	in	
order	to	create	a	more	structured	code.	I	recommend	that	you	(always)	use	this	feature.	

The	Simulation	Subsystem	is	almost	equal	to	a	normal	LabVIEW	Block	Diagram	but	notice	the	
background	color	is	slightly	darker.	

Note!	In	order	to	open	the	Simulation	Subsystem,	right-click	and	select	“Open	Subsystem”.	

The	Simulation	Subsystem	may	also	be	represented	by	different	icons.	If	you	select	
“dynamic”	icon	style,	you	will	see	a	“miniature”	version	of	the	subsystem	like	this:	



14	 	 Simulation	 	

Tutorial: Control and Simulation in LabVIEW 

	

	 You	may	drag	in	the	corner	in	order	to	increase	or	decrease	the	dynamic	icon.	

If	you	select	“static”	icon	style	you	see	the	icon	you	created	with	the	Icon	Editor.	

	

Like	this:	 	

	

4.3 Continuous	Linear	Systems	
In	the	“Continuous	Linear	Systems”	Sub	palette	we	want	to	create	a	simulation	model:	

	

The	most	used	blocks	probably	are	Integrator,	Transport	Delay,	State-Space	and	Transfer	
Function.	
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When	you	place	these	blocks	on	the	diagram	you	may	double-click	or	right-click	and	then	
select	“Configuration…”	 	 	

	 Integrator	-	Integrates	a	continuous	input	signal	using	the	ordinary	differential	
equation	(ODE)	solver	you	specify	for	the	simulation.	

The	Configuration	window	for	the	Integrator	block	looks	like	this:	

	

	 Transport	Delay	-	Delays	the	input	signal	by	the	amount	of	time	you	specify.	

The	Configuration	window	for	the	Transport	Delay	block	looks	like	this:	

	

	

	 Transfer	Function	-	Implements	a	system	model	in	transfer	function	form.	You	define	
the	system	model	by	specifying	the	Numerator	and	Denominator	of	the	transfer	function	
equation.	
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The	Configuration	window	for	the	Transfer	Function	block	looks	like	this:	

	

	 State-Space	-	Implements	a	system	model	in	state-space	form.	You	define	the	system	
model	by	specifying	the	input,	output,	state,	and	direct	transmission	matrices.	

The	Configuration	window	for	the	State-Space	block	looks	like	this:	

	

	

Signal	Arithmetic:	

The	“Signal	Arithmetic”	Sub	palette	is	also	useful	when	creating	a	simulation	model:	
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Example:	Simulation	Model	

Below	we	see	an	example	of	a	simulation	model	created	in	LabVIEW.	

	

	

Example:	Simulation	

Below	we	see	an	example	of	a	simulation	model	using	the	Control	and	Simulation	Loop.	

	

Notice	the	following:	
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Click	on	the	border	of	the	simulation	loop	and	select	“Configure	Simulation	Parameters…”	

	

The	following	window	appears	(Configure	Simulation	Parameters):	

	 	

In	this	window	you	set	some	Parameters	regarding	the	simulation,	some	important	are:	

• Final	Time	(s)	–	set	how	long	the	simulation	should	last.	For	an	infinite	time	set	“Inf”.	
• Enable	Synchronized	Timing	-	Specifies	that	you	want	to	synchronize	the	timing	of	

the	Control	&	Simulation	Loop	to	a	timing	source.	To	enable	synchronization,	place	a	
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checkmark	in	this	checkbox	and	then	choose	a	timing	source	from	the	Source	type	
list	box.	

Click	the	Help	button	for	more	details.	

You	may	also	set	some	of	these	Parameters	in	the	Block	Diagram:	

	

You	may	use	the	mouse	to	increase	the	numbers	of	Parameters	and	right-click	and	select	
“Select	Input”.	

Exercises	
Exercise:	Simulation	of	a	spring-mass	damper	system	

In	this	exercise	you	will	construct	a	simulation	diagram	that	represents	the	behavior	of	a	
dynamic	system.	You	will	simulate	a	spring-mass	damper	system.	

𝐹(𝑡) − 𝑐𝑥(𝑡) − 𝑘𝑥(𝑡) = 𝑚𝑥(𝑡)	

where	t	is	the	simulation	time,	F(t)	is	an	external	force	applied	to	the	system,	c	is	the	
damping	constant	of	the	spring,	k	is	the	stiffness	of	the	spring,	m	is	a	mass,	and	x(t)	is	the	
position	of	the	mass.	 𝑥	 is	the	first	derivative	of	the	position,	which	equals	the	velocity	of	
the	mass.	 𝑥	 is	the	second	derivative	of	the	position,	which	equals	the	acceleration	of	the	
mass.	

The	following	figure	shows	this	dynamic	system.	
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The	goal	is	to	view	the	position	x(t)	of	the	mass	m	with	respect	to	time	t.	You	can	calculate	
the	position	by	integrating	the	velocity	of	the	mass.	You	can	calculate	the	velocity	by	
integrating	the	acceleration	of	the	mass.	If	you	know	the	force	and	mass,	you	can	calculate	
this	acceleration	by	using	Newton's	Second	Law	of	Motion,	given	by	the	following	equation:	

Force	=	Mass	×	Acceleration	

Therefore,	 	

Acceleration	=	Force	/	Mass	

Substituting	terms	from	the	differential	equation	above	yields	the	following	equation:	

𝑥 =
1
𝑚
(𝐹 − 𝑐𝑥 − 𝑘𝑥)	

You	will	construct	a	simulation	diagram	that	iterates	the	following	steps	over	a	period	of	
time.	

Creating	the	Simulation	Diagram	

You	create	a	simulation	diagram	by	placing	a	Control	&	Simulation	Loop	on	the	LabVIEW	
block	diagram.	 	

1. Launch	LabVIEW	and	select	File»New	VI	to	create	a	new,	blank	VI.	 	
2. Select	Window»Show	Block	Diagram	to	view	the	block	diagram.	You	also	can	press	

the	<Ctrl-E>	keys	to	view	the	block	diagram.	 	
3. If	you	are	not	already	viewing	the	Functions	palette,	select	View»Functions	Palette	to	

display	this	palette.	 	
4. Select	Control	Design	&	Simulation»Simulation	to	view	the	Simulation	palette.	 	
5. Click	the	Control	&	Simulation	Loop	icon.	 	
6. Move	the	cursor	over	the	block	diagram.	Click	to	place	the	top	left	corner	of	the	loop,	

drag	the	cursor	diagonally	to	establish	the	size	of	the	loop,	and	click	again	to	place	
the	loop	on	the	block	diagram.	 	

The	simulation	diagram	is	the	area	enclosed	by	the	Control	&	Simulation	Loop.	Notice	the	
simulation	diagram	has	a	pale	yellow	background	to	distinguish	it	from	the	rest	of	the	block	
diagram.	You	can	resize	the	Control	&	Simulation	Loop	by	dragging	its	borders.	 	

Configuring	Simulation	Parameters	

The	Control	&	Simulation	Loop	contains	the	parameters	that	define	how	the	simulation	
executes.	Complete	the	following	steps	to	view	and	configure	these	simulation	parameters.	

1. Double-click	the	Input	Node,	attached	to	the	left	side	of	the	Control	&	Simulation	
Loop,	to	display	the	Configure	Simulation	Parameters	dialog	box.	You	also	can	right-
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click	the	loop	border	and	select	Configure	Simulation	Parameters	from	the	shortcut	
menu.	 	

2. Ensure	the	value	of	the	Final	Time	(s)	numeric	control	is	10,	which	specifies	that	this	
tutorial	simulates	ten	seconds	of	time.	 	

3. Click	the	ODE	Solver	pull-down	menu	to	view	the	list	of	ODE	solvers	the	Control	
Design	and	Simulation	Module	includes.	If	the	term	(variable)	appears	next	to	an	ODE	
solver,	that	solver	has	a	variable	step	size.	The	other	ODE	solvers	have	a	fixed	step	
size.	Ensure	a	checkmark	is	beside	the	default	ODE	solver	Runge-Kutta	23	(variable).	 	

4. Because	this	ODE	solver	is	a	variable	step-size	solver,	you	can	specify	the	Minimum	
Step	Size	(s)	and	Maximum	Step	Size	(s)	this	ODE	solver	can	take.	Enter	0.01	in	the	
Maximum	Step	Size	(s)	numeric	control	to	limit	the	size	of	the	time	step	this	ODE	
solver	can	take.	 	

5. Click	the	Timing	Parameters	tab	to	access	parameters	that	control	how	often	the	
simulation	executes.	 	

6. Ensure	the	Synchronize	Loop	to	Timing	Source	checkbox	does	not	contain	a	
checkmark.	This	option	specifies	that	the	simulation	executes	without	any	timing	
restrictions.	Use	this	option	when	you	want	the	simulation	to	run	as	fast	as	possible.	
If	you	are	running	this	simulation	in	real-time,	you	can	place	a	checkmark	in	this	
checkbox	and	configure	how	often	the	simulation	executes.	 	

7. Click	the	OK	button	to	save	changes	and	return	to	the	simulation	diagram.	 	

Building	the	Simulation	

The	next	step	is	to	build	the	simulation	by	placing	Simulation	functions	on	the	simulation	
diagram	and	wiring	these	functions	together.	Note	that	you	can	place	most	Simulation	
functions	only	on	the	simulation	diagram,	that	is,	you	cannot	place	Simulation	functions	on	a	
LabVIEW	block	diagram.	Complete	the	following	steps	to	build	the	simulation	of	this	dynamic	
system.	

Placing	Functions	on	the	Simulation	Diagram	

1. Open	the	Simulation	palette.	 	
2. Select	the	Signal	Arithmetic	palette	and	place	a	Multiplication	function	on	the	

simulation	diagram.	You	will	use	this	function	to	divide	the	force	by	the	mass	to	
calculate	the	acceleration.	 	

3. Double-click	the	Multiplication	function	to	display	the	Multiplication	Configuration	
dialog	box.	You	can	double-click	most	Simulation	functions	to	view	and	change	the	
parameters	of	that	function.	 	

4. The	function	currently	displays	two	×	symbols	on	the	left	side	of	the	dialog	box.	This	
setting	specifies	that	both	incoming	signals	are	multiplied	together.	Click	the	bottom	
×	symbol	to	change	it	to	a	÷	symbol.	This	Multiplication	function	now	divides	the	top	
signal	by	the	bottom	signal.	 	

5. Click	the	OK	button	to	save	changes	and	return	to	the	simulation	diagram.	 	
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6. Right-click	the	Multiplication	function	and	select	Visible	Items»Label	from	the	
shortcut	menu.	Double-click	the	Multiplication	label	and	enter	Calculate	Acceleration	
as	the	new	label.	 	

7. Return	to	the	Simulation	palette	and	select	the	Continuous	Linear	Systems	palette.	 	
8. Place	an	Integrator	function	on	the	simulation	diagram.	You	will	use	this	function	to	

calculate	velocity	by	integrating	acceleration.	 	
9. Label	this	Integrator	function	Calculate	Velocity.	 	
10. Press	the	<Ctrl>	key	and	click	and	drag	the	Integrator	function	to	another	location	on	

the	simulation	diagram.	This	action	creates	a	copy	of	the	Integrator	function,	which	
you	will	use	to	calculate	position	by	integrating	velocity.	Label	this	new	Integrator	
function	Calculate	Position.	 	

11. Select	the	Graph	Utilities	palette	and	place	two	SimTime	Waveform	functions	on	the	
simulation	diagram.	You	will	use	these	functions	to	view	the	results	of	the	simulation	
over	time.	 	

12. Each	SimTime	Waveform	function	has	an	associated	Waveform	Chart.	Label	the	first	
waveform	chart	Velocity	and	the	second	waveform	chart	Position.	 	

13. Arrange	the	functions	to	look	like	the	following	simulation	diagram.	 	
14. Save	this	VI	by	selecting	File»Save.	Save	this	VI	to	a	convenient	location	as	“Spring-

Mass	Damper	Example.vi”.	 	

The	Block	Diagram	should	now	look	like	this:	

	

Wiring	the	Simulation	Functions	Together	

The	next	step	is	wiring	the	functions	together	to	represent	the	flow	of	data	from	one	
function	to	another.	

Note!	Wires	on	the	simulation	diagram	include	arrows	that	show	the	direction	of	the	
dataflow,	whereas	wires	on	a	LabVIEW	block	diagram	do	not	show	these	arrows.	 	
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Complete	the	following	steps	to	wire	these	functions	together.	

1. Right-click	the	Operand1	input	of	the	Calculate	Acceleration	function	and	select	
Create»Control	from	the	shortcut	menu	to	add	a	numeric	control	to	the	front	panel	
window.	 	

2. Label	this	control	Force.	 	
3. Double-click	this	control	on	the	simulation	diagram.	LabVIEW	displays	the	front	panel	

and	highlights	the	Force	control.	 	
4. Display	the	block	diagram	and	create	a	control	for	the	Operand2	input	of	the	

Calculate	Acceleration	function.	Label	this	new	control	Mass.	 	
5. Wire	the	Result	output	of	the	Calculate	Acceleration	function	to	the	input	input	of	

the	Calculate	Velocity	function.	 	
6. Wire	the	output	output	of	the	Calculate	Velocity	function	to	the	input	input	of	the	

Calculate	Position	function.	 	
7. Right-click	the	wire	you	just	created	and	select	Create	Wire	Branch	from	the	shortcut	

menu.	Wire	this	branch	to	the	Value	input	of	the	SimTime	Waveform	function	that	
has	the	Velocity	waveform	chart.	 	

8. Wire	the	output	output	of	the	Calculate	Position	function	to	the	Value	input	of	the	
SimTime	Waveform	function	that	has	the	Position	waveform	chart.	 	

	 The	Block	Diagram	should	now	look	like	this:	

	

	

Running	the	Simulation	

You	now	can	run	this	simulation	to	test	that	the	data	is	flowing	properly	through	the	
Simulation	functions.	Complete	the	following	steps	to	run	this	simulation.	
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1. Select	Window»Show	Front	Panel,	or	press	<Ctrl-E>,	to	view	the	front	panel	of	this	
simulation.	The	front	panel	displays	the	following	objects:	a	control	labeled	Force,	a	
control	labeled	Mass,	a	waveform	chart	labeled	Velocity,	and	a	waveform	chart	
labeled	Position.	 	

2. If	necessary,	rearrange	these	controls	and	indicators	so	that	all	objects	are	visible.	 	
3. Enter	-9.8	in	the	Force	numeric	control.	This	value	represents	the	force	of	gravity,	9.8	

meters	per	second	squared,	acting	on	the	dynamic	system.	 	
4. Enter	1	in	the	Mass	numeric	control.	This	value	represents	a	mass	of	one	kilogram.	 	
5. Click	the	Run	button,	or	press	the	<Ctrl-R>	keys,	to	run	the	VI.	 	

The	Front	Panel	should	look	like	this:	

	

In	the	Figure	above	notice	that	the	force	of	gravity	causes	the	mass	position	and	velocity	to	
constantly	decrease.	However,	in	the	real	world,	a	mass	attached	to	a	spring	oscillates	up	
and	down.	This	simulated	spring	does	not	oscillate	because	the	simulation	diagram	does	not	
represent	damping	or	stiffness.	You	must	represent	these	factors	to	have	a	complete	
simulation	of	the	dynamic	system.	

Representing	Damping	and	Stiffness	
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Representing	damping	and	stiffness	involves	feeding	back	the	velocity	and	position,	each	
multiplied	by	a	different	constant,	to	the	input	of	the	Calculate	Acceleration	function.	Recall	
the	following	differential	equation	this	VI	simulates.	

𝐹(𝑡) − 𝑐𝑥(𝑡) − 𝑘𝑥(𝑡) = 𝑚𝑥(𝑡)	

In	the	previous	equation,	notice	you	multiply	the	damping	constant	c	by	the	velocity	of	the	
mass	 𝑥.	You	multiply	the	stiffness	constant	k	by	the	mass	position	x(t).	You	then	subtract	
these	quantities	from	the	external	force	applied	to	the	mass.	

Complete	the	following	steps	to	represent	damping	and	stiffness	in	this	dynamic	system	
model.	

1. View	the	simulation	diagram.	 	
2. Select	the	Signal	Arithmetic	palette	and	place	a	Summation	function	on	the	

simulation	diagram.	Move	this	function	to	the	left	of	the	Force	and	Mass	controls.	 	
3. Double-click	the	Summation	function	to	configure	its	operation.	By	default,	the	

Summation	function	displays	the	following	three	input	terminals:	a	Ø	symbol,	a	+	
symbol,	and	a	–	symbol.	This	configuration	subtracts	one	input	signal	from	another.	 	 	 	

4. Click	the	Ø	symbol	twice	to	change	this	terminal	to	the	–	symbol.	This	Summation	
function	now	subtracts	the	top	and	bottom	input	signals	from	the	left	input	signal.	 	

5. Click	the	OK	button	to	save	changes	and	return	to	the	simulation	diagram.	 	
6. Select	the	Signal	Arithmetic	palette	and	place	a	Gain	function	on	the	simulation	

diagram.	Move	this	function	above	the	existing	simulation	diagram	code	but	still	
within	the	Control	&	Simulation	Loop.	 	

7. The	input	of	the	Gain	function	is	on	the	left	side	of	the	function,	and	the	output	is	on	
the	right	side.	You	can	reverse	the	direction	of	these	terminals	to	indicate	feedback	
better.	Right-click	the	Gain	function	and	select	Reverse	Terminals	from	the	shortcut	
menu.	The	Gain	function	now	points	toward	the	left	side	of	the	simulation	diagram.	 	

8. Label	this	Gain	function	Damping.	 	
9. Press	the	<Ctrl>	key	and	drag	the	Gain	function	to	create	a	separate	copy.	Move	this	

copy	below	the	existing	simulation	diagram	code	but	still	within	the	Control	&	
Simulation	Loop.	Label	this	function	Stiffness.	 	

10. Right-click	the	wire	connecting	the	Force	control	to	the	Calculate	Acceleration	
function	and	select	Delete	Wire	Branch	from	the	shortcut	menu.	Move	the	Force	
control	to	the	left	of	the	Summation	function,	and	wire	this	control	to	the	Operand2	
input	of	the	Summation	function.	 	

11. Create	wires	1–5	as	indicated	in	the	Figure	below.	The	simulation	diagram	now	fully	
represents	the	equation	that	defines	the	behavior	of	the	dynamic	system.	 	

12. Press	<Ctrl-S>	to	save	the	VI.	 	

The	Block	Diagram	should	now	look	like	this:	 	
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Configuring	the	Stiffness	of	the	Spring	

Before	you	run	the	simulation	again,	you	must	configure	the	stiffness	of	the	simulated	
spring.	Complete	the	following	steps	to	configure	this	Simulation	function.	

1. Double-click	the	Stiffness	function	to	display	the	Gain	Configuration	dialog	box.	 	
2. Enter	100	in	the	gain	numeric	control.	This	value	represents	a	stiffness	of	100	

Newtons	per	meter.	 	
3. Click	OK	to	return	to	the	simulation	diagram.	Notice	that	the	Stiffness	function	

displays	100.	 	
4. Display	the	front	panel	and	ensure	the	Force	control	is	set	to	-9.8	and	the	Mass	

control	is	set	to	1.	 	
5. Run	the	simulation.	The	Velocity	and	Position	charts	display	the	behavior	of	the	mass	

as	the	spring	oscillates.	Notice	the	new	behavior	compared	to	the	last	time	you	ran	
the	simulation.	This	time,	the	velocity	and	position	do	not	constantly	decrease.	Both	
values	oscillate,	which	is	how	a	spring	behaves	in	the	real	world.	 	

6. Change	the	value	of	the	Mass	control	to	10	and	run	the	simulation	again.	Notice	the	
different	behavior	in	the	Velocity	and	Position	charts.	The	10	kg	mass	forces	the	
spring	to	oscillate	less	frequently	and	within	a	smaller	velocity/position	range.	 	

The	Front	Panel	should	look	like	this:	
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Configuring	Simulation	Functions	Programmatically	

The	previous	section	provided	information	about	configuring	Simulation	functions	using	the	
configuration	dialog	box.	Instead	of	using	the	configuration	dialog	box,	you	can	improve	the	
interactivity	of	a	simulation	by	creating	front	panel	controls	that	configure	a	Simulation	
function	programmatically.	Complete	the	following	steps	to	configure	the	Stiffness	function	
programmatically.	

1. If	you	are	not	already	viewing	the	Context	Help	window,	press	<Ctrl-H>	to	display	this	
window.	 	

2. Display	the	block	diagram	and	move	the	cursor	over	the	Stiffness	function.	Notice	
this	function	has	only	one	input	terminal.	 	

3. Display	the	Gain	Configuration	dialog	box	of	the	Stiffness	function.	 	
4. Select	Terminal	from	the	Parameter	source	pull-down	menu.	This	action	disables	the	

gain	numeric	control.	 	
5. Click	the	OK	button	to	save	changes	and	return	to	the	block	diagram.	 	
6. Move	the	cursor	over	the	Stiffness	function.	Notice	the	Context	Help	window	displays	

the	Gain	function	with	the	new	gain	input	terminal.	 	
7. Create	a	control	for	this	input,	and	label	the	control	gain	(k).	 	
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8. View	the	front	panel.	Notice	the	new	control	gain	(k).	Enter	a	value	of	100	for	this	
control	and	run	the	simulation.	Notice	the	behavior	is	exactly	the	same	as	when	you	
used	the	configuration	dialog	box	to	configure	the	Stiffness	function.	

Modularizing	Simulation	Diagram	Code	

You	can	create	simulation	subsystems	to	divide	simulation	diagrams	into	components	that	
are	modular,	reusable,	and	independently	verifiable.	Complete	the	following	steps	to	create	
a	simulation	subsystem	from	this	simulation	diagram.	

1. View	the	simulation	diagram.	 	
2. Select	the	Calculate	Acceleration,	Calculate	Velocity,	and	Calculate	Position	functions	

by	pressing	the	<Shift>	key	and	clicking	each	function.	 	
3. Select	Edit»Create	Simulation	Subsystem.	LabVIEW	replaces	these	three	functions	

with	a	single	function	that	represents	the	simulation	subsystem,	which	is	circled	in	
the	Figure	below.	The	inputs	and	outputs	of	the	simulation	subsystem	include	the	
inputs	and	outputs	of	all	the	functions	you	selected.	Also,	notice	the	amount	of	blank	
space	on	the	simulation	diagram.	Because	you	combined	three	functions	into	a	
subsystem,	you	can	resize	the	Control	&	Simulation	Loop	and	reposition	the	functions	
to	make	the	simulation	diagram	easier	to	view.	 	

4. Press	<Ctrl-S>	to	save	the	simulation	diagram.	LabVIEW	prompts	you	to	save	the	
simulation	subsystem	you	just	created.	Click	the	Yes	button	and	save	this	simulation	
subsystem	as	“Newton.vi”.	You	now	have	a	simulation	subsystem	that	obtains	the	
position	of	a	mass	by	using	Newton's	Second	Law	of	Motion.	 	

Note!	You	can	resize	the	simulation	subsystem	to	better	display	its	simulation	diagram.	You	
also	can	double-click	the	simulation	subsystem	to	display	the	configuration	dialog	box	of	that	
simulation	subsystem.	 	

The	simulation	subsystem	should	look	like	this:	
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Editing	the	Simulation	Subsystem	

Edit	the	simulation	subsystem	“Newton.vi”	by	right-clicking	this	subsystem	and	selecting	
Open	Subsystem	from	the	shortcut	menu.	View	the	simulation	diagram.	 	

Notice	this	simulation	subsystem	does	not	contain	a	Control	&	Simulation	Loop,	but	the	
entire	background	is	pale	yellow	to	indicate	a	simulation	diagram.	If	you	place	this	
simulation	subsystem	in	a	Control	&	Simulation	Loop,	the	simulation	subsystem	inherits	all	
simulation	parameters	from	the	Control	&	Simulation	Loop.	 	

If	you	run	this	subsystem	as	a	stand-alone	VI,	you	can	configure	the	simulation	parameters	
by	selecting	Operate»Configure	Simulation	Parameters.	Any	parameters	you	configure	using	
this	method	do	not	take	effect	when	the	subsystem	is	within	another	Control	&	Simulation	
Loop.	If	you	place	this	simulation	subsystem	on	a	block	diagram	outside	a	Control	&	
Simulation	Loop,	you	can	configure	the	simulation	parameters	by	double-clicking	the	
simulation	subsystem	to	display	the	configuration	dialog	box	of	that	simulation	subsystem.	

Configuring	Simulation	Parameters	Programmatically	

Earlier	in	this	exercise,	you	used	the	Configure	Simulation	Parameters	dialog	box	to	
configure	the	parameters	of	“Spring-Mass	Damper	Example.vi”.	You	also	can	configure	
simulation	parameters	programmatically	by	using	the	Input	Node	of	the	Control	&	
Simulation	Loop.	Complete	the	following	steps	to	configure	simulation	parameters	
programmatically.	

1. View	the	simulation	diagram	of	“Spring-Mass	Damper	Example.vi”.	 	
2. Move	the	cursor	over	the	Input	Node	to	display	resizing	handles.	 	
3. Drag	the	bottom	handle	down	to	display	all	available	Node	inputs.	You	use	these	

inputs	to	configure	the	simulation	parameters	without	displaying	the	Configure	
Simulation	Parameters	dialog	box.	You	also	can	right-click	the	Input	Node	and	select	
Show	All	Inputs	from	the	shortcut	menu.	 	
	
Notice	the	gray	boxes	next	to	each	input.	These	boxes	display	values	you	configure	in	
the	Configure	Simulation	Parameters	dialog	box.	For	example,	the	third	gray	box	
from	the	top	displays	10.0000,	which	is	the	value	of	the	Final	Time	numeric	control	
that	you	configured.	The	fifth	gray	box	from	the	top	displays	RK	23.	This	box	specifies	
the	current	ODE	solver,	which	you	configured	as	Runge-Kutta	23	(variable).	Move	the	
cursor	over	the	left	edge	of	each	Node	input	to	display	the	label	of	that	input.	 	

4. Right-click	the	input	terminal	of	the	ODE	Solver	input	and	select	Create»Constant	
from	the	shortcut	menu.	A	block	diagram	constant	appears	outside	the	Control	&	
Simulation	Loop.	The	value	of	this	constant	is	Runge-Kutta	1	(Euler),	which	is	
different	than	what	you	configured	in	the	Configure	Simulation	Parameters	dialog	
box.	However,	the	gray	box	disappears	from	the	Input	Node,	indicating	that	the	value	
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of	this	parameter	does	not	come	from	the	Configure	Simulation	Parameters	dialog	
box.	Values	that	you	programmatically	configure	override	any	settings	you	made	in	
the	Configure	Simulation	Parameters	dialog	box.	

The	Input	Node	should	now	look	like	the	following	figure:	

	

Summary	

This	exercise	introduced	you	to	the	following	concepts:	

The	simulation	diagram	reflects	the	dynamic	system	model	you	want	to	simulate.	This	
dynamic	system	model	is	a	differential	or	difference	equation	that	represents	a	dynamic	
system.	 	

The	Control	&	Simulation	Loop	contains	the	parameters	that	define	the	behavior	of	the	
simulation.	The	Control	&	Simulation	Loop	also	defines	the	visual	boundary	of	the	simulation	
diagram.	Double-click	the	Input	Node	of	the	Control	&	Simulation	Loop	to	access	
configurable	parameters.	You	also	can	expand	the	Input	Node	to	access	these	parameters.	 	

The	Simulation	palette	contains	the	VIs	and	functions	you	use	to	build	a	simulation.	You	can	
double-click	most	Simulation	functions	to	display	a	dialog	box	that	configures	that	function.	
You	also	can	create	input	terminals	for	function	inputs.	 	

You	can	create	simulation	subsystems	to	modularize,	encapsulate,	validate,	and	re-use	
portions	of	the	simulation	diagram.	
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5 PID	Control	
Currently,	the	Proportional-Integral-Derivative	(PID)	algorithm	is	the	most	common	control	
algorithm	used	in	industry.	Often,	people	use	PID	to	control	processes	that	include	heating	
and	cooling	systems,	fluid	level	monitoring,	flow	control,	and	pressure	control.	In	PID	
control,	you	must	specify	a	process	variable	and	a	setpoint.	The	process	variable	is	the	
system	parameter	you	want	to	control,	such	as	temperature,	pressure,	or	flow	rate,	and	the	
setpoint	is	the	desired	value	for	the	parameter	you	are	controlling.	A	PID	controller	
determines	a	controller	output	value,	such	as	the	heater	power	or	valve	position.	The	
controller	applies	the	controller	output	value	to	the	system,	which	in	turn	drives	the	process	
variable	toward	the	setpoint	value.	

	

[Wikipedia]	

The	PID	controller	compares	the	setpoint	(SP)	to	the	process	variable	(PV)	to	obtain	the	error	
(e).	

	

Then	the	PID	controller	calculates	the	controller	action,	u(t),	where	Kc	is	controller	gain.	

	

Ti	is	the	integral	time	in	minutes,	also	called	the	reset	time,	and	Td	is	the	derivative	time	in	
minutes,	also	called	the	rate	time.	 	

The	following	formula	represents	the	proportional	action.	

	

The	following	formula	represents	the	integral	action.	
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The	following	formula	represents	the	derivative	action.	

	

5.1 PID	Control	in	LabVIEW	
In	the	“PID”	Sub	palette	we	have	the	functions/SubVIs	for	PID	Control.	I	recommend	that	
you	use	the	“PID	Advanced.vi”.	

	

	

Example:	PID	Control	

Below	we	see	how	we	can	use	the	PID	Advanvanced.vi	in	order	to	control	a	simulated	
Model.	
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5.2 Auto-tuning	
The	LabVIEW	PID	and	Fuzzy	Logic	Toolkit	include	a	VI	for	auto-tuning.	
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6 Control	Design	
Control	design	is	a	process	that	involves	developing	mathematical	models	that	describe	a	
physical	system,	analyzing	the	models	to	learn	about	their	dynamic	characteristics,	and	
creating	a	controller	to	achieve	certain	dynamic	characteristics.	

	

6.1 Control	Design	in	LabVIEW	
Control	Design	palette:	
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7 System	Identification	

7.1 System	Identification	in	LabVIEW	
The	“System	Identification	Toolkit”	combines	data	acquisition	tools	with	system	
identification	algorithms	for	accurate	plant	modeling.	You	can	take	advantage	of	LabVIEW	
intuitive	data	acquisition	tools	such	as	the	DAQ	Assistant	to	stimulate	and	acquire	data	from	
the	plant	and	then	automatically	identify	a	dynamic	system	model.	You	can	convert	system	
identification	models	to	state-space,	transfer	function,	or	pole-zero-gain	form	for	control	
system	analysis	and	design.	The	toolkit	includes	built-in	functions	for	common	tasks	such	as	
data	preprocessing,	model	creation,	and	system	analysis.	Using	other	built-in	utilities,	you	
can	plot	the	model	with	intuitive	graphical	representation	as	well	as	store	the	model.	

System	Identification	palette:	
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8 Fuzzy	Logic	
Fuzzy	logic	is	a	method	of	rule-based	decision	making	used	for	expert	systems	and	process	
control.	Fuzzy	logic	differs	from	traditional	Boolean	logic	in	that	fuzzy	logic	allows	for	partial	
membership	in	a	set.	You	can	use	fuzzy	logic	to	control	processes	represented	by	subjective,	
linguistic	descriptions.	

A	fuzzy	system	is	a	system	of	variables	that	are	associated	using	fuzzy	logic.	A	fuzzy	
controller	uses	defined	rules	to	control	a	fuzzy	system	based	on	the	current	values	of	input	
variables.	

	

[Wikipedia]	

8.1 Fuzzy	Logic	in	LabVIEW	
The	Fuzzy	Logic	palette	in	LabVIEW:	
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9 LabVIEW	MathScript	
Requires:	MathScript	RT	Module	

The	“LabVIEW	MathScript	Window”	is	an	interactive	interface	in	which	you	can	enter	.m	file	
script	commands	and	see	immediate	results,	variables	and	commands	history.	The	window	
includes	a	command-line	interface	where	you	can	enter	commands	one-by-one	for	quick	
calculations,	script	debugging	or	learning.	Alternatively,	you	can	enter	and	execute	groups	of	
commands	through	a	script	editor	window.	

As	you	work,	a	variable	display	updates	to	show	the	graphical	/	textual	results	and	a	history	
window	tracks	your	commands.	The	history	view	facilitates	algorithm	development	by	
allowing	you	to	use	the	clipboard	to	reuse	your	previously	executed	commands.	

You	can	use	the	“LabVIEW	MathScript	Window”	to	enter	commands	one	at	time.	You	also	
can	enter	batch	scripts	in	a	simple	text	editor	window,	loaded	from	a	text	file,	or	imported	
from	a	separate	text	editor.	The	“LabVIEW	MathScript	Window”	provides	immediate	
feedback	in	a	variety	of	forms,	such	as	graphs	and	text.	

	

	

	

Example:	
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9.1 Help	
You	may	also	type	help	in	your	command	window	

>>help 

Or	more	specific,	e.g.,	

>>help plot 

9.2 Examples	
I	advise	you	to	test	all	the	examples	in	this	text	in	LabVIEW	MathScript	in	order	to	get	
familiar	with	the	program	and	its	syntax.	All	examples	in	the	text	are	outlined	in	a	frame	like	
this:	

>> 
… 
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This	is	commands	you	should	write	in	the	Command	Window.	

You	type	all	your	commands	in	the	Command	Window.	I	will	use	the	symbol	“>>”	to	
illustrate	that	the	commands	should	be	written	in	the	Command	Window.	

Example:	Matrices	

Defining	the	following	matrix	

𝐴 = 1 2
0 3 	

The	syntax	is	as	follows:	

>> A = [1 2;0 3] 

Or	

>> A = [1,2;0,3] 

If	you,	for	an	example,	want	to	find	the	answer	to	

𝑎 + 𝑏,𝑤ℎ𝑒𝑟𝑒	𝑎 = 4, 𝑏 = 3	

>>a=4 
>>b=3 
>>a+b 

MathScript	then	responds:	

ans = 
     7 

MathScript	provides	a	simple	way	to	define	simple	arrays	using	the	syntax:	
“init:increment:terminator”.	For	instance:	

>> array = 1:2:9 
array = 
 1 3 5 7 9 

defines	a	variable	named	array	(or	assigns	a	new	value	to	an	existing	variable	with	the	name	
array)	which	is	an	array	consisting	of	the	values	1,	3,	5,	7,	and	9.	That	is,	the	array	starts	at	1	
(the	init	value),	increments	with	each	step	from	the	previous	value	by	2	(the	increment	
value),	and	stops	once	it	reaches	(or	to	avoid	exceeding)	9	(the	terminator	value).	

The	increment	value	can	actually	be	left	out	of	this	syntax	(along	with	one	of	the	colons),	to	
use	a	default	value	of	1.	

>> ari = 1:5 
ari = 
 1 2 3 4 5 
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assigns	to	the	variable	named	ari	an	array	with	the	values	1,	2,	3,	4,	and	5,	since	the	default	
value	of	1	is	used	as	the	incrementer.	

Note	that	the	indexing	is	one-based,	which	is	the	usual	convention	for	matrices	in	
mathematics.	This	is	atypical	for	programming	languages,	whose	arrays	more	often	start	
with	zero.	

Matrices	can	be	defined	by	separating	the	elements	of	a	row	with	blank	space	or	comma	and	
using	a	semicolon	to	terminate	each	row.	The	list	of	elements	should	be	surrounded	by	
square	brackets:	[].	Parentheses:	()	are	used	to	access	elements	and	subarrays	(they	are	also	
used	to	denote	a	function	argument	list).	

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1] 
A = 
 16  3  2 13 
  5 10 11  8 
  9  6  7 12 
  4 15 14  1 
>> A(2,3) 
ans = 
 11 

	

Sets	of	indices	can	be	specified	by	expressions	such	as	"2:4",	which	evaluates	to	[2,	3,	4].	For	
example,	a	submatrix	taken	from	rows	2	through	4	and	columns	3	through	4	can	be	written	
as:	

>> A(2:4,3:4) 
ans = 
 11 8 
 7 12 
 14 1 

	

A	square	identity	matrix	of	size	n	can	be	generated	using	the	function	eye,	and	matrices	of	
any	size	with	zeros	or	ones	can	be	generated	with	the	functions	zeros	and	ones,	respectively.	

>> eye(3) 
ans = 
 1 0 0 
 0 1 0 
 0 0 1 
>> zeros(2,3) 
ans = 
 0 0 0 
 0 0 0 
>> ones(2,3) 
ans = 
 1 1 1 
 1 1 1 
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9.3 Useful	commands	
Here	are	some	useful	commands:	

Command	 Description	
eye(x), eye(x,y) Identity	matrix	of	order	x	
ones(x), ones(x,y) A	matrix	with	only	ones	
zeros(x), zeros(x,y) A	matrix	with	only	zeros	
diag([x y z]) Diagonal	matrix	
size(A) Dimension	of	matrix	A	
A’ Inverse	of	matrix	A	

9.4 Plotting	
This	chapter	explains	the	basic	concepts	of	creating	plots	in	MathScript.	

Topics:	

• Basic	Plot	commands	

	

Example:	Plotting	

Function	plot	can	be	used	to	produce	a	graph	from	two	vectors	x	and	y.	The	code:	

x = 0:pi/100:2*pi; 
y = sin(x); 
plot(x,y) 
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10 Discretization	
Often,	we	need	to	develop	discrete	algorithms	of	our	process.	In	addition,	we	might	need	to	
create	our	own	discrete	PI(D)	controller.	A	discrete	low-pass	filter	is	also	good	to	have.	

There	exists	lots	of	different	discretization	methods	like	the	“Zero	Order	Hold”	(ZOH)	
method,	Tustin’s	method	and	Euler’s	methods	(Forward	and	Backward).	We	will	focus	on	
Eulers	methods	in	this	document,	because	they	are	very	easy	to	use.	

Euler	Forward	discretization	method:	

𝒙 ≈
𝒙𝒌=𝟏 − 𝒙𝒌

𝑻𝒔
	

Euler	Backward	discretization	method:	

𝒙 ≈
𝒙𝒌 − 𝒙𝒌A𝟏

𝑻𝒔
	

	 𝑇C	 is	the	Sampling	Time.	

10.1 Low-pass	Filter	
The	transfer	function	for	a	first-order	low-pass	filter	may	be	written:	

𝑯 𝒔 =
𝒚𝒇(𝒔)
𝒚(𝒔)

=
𝟏

𝑻𝒇𝒔 + 𝟏
	

Where	 𝑇G	 is	the	time-constant	of	the	filter,	 𝑦(𝑠)	 is	the	filter	input	and	 𝑦G 𝑠 	 is	the	filter	
output.	

Discrete	version:	

It	can	be	shown	that	a	discrete	version	can	be	stated	as:	

𝒚𝒇,𝒌 = 𝟏 − 𝒂 𝒚𝒇,𝒌A𝟏 + 𝒂𝒚𝒌	

Where	
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𝒂 =
𝑻𝒔

𝑻𝒇 + 𝑻𝒔
	

Where	 𝑇C	 is	the	Sampling	Time.	

It	is	a	golden	rule	that	 𝑇C ≪ 𝑇G	 and	in	practice	we	should	use	the	following	rule:	

𝑇C ≤
𝑇G
5
	

Example:	

We	will	implement	the	discrete	low-pass	filter	algorithm	below	using	a	Formula	Node	in	
LabVIEW:	

𝑦G,N = 1 − 𝑎 𝑦G,NAO + 𝑎𝑦N	

Where	

𝑎 =
𝑇C

𝑇G + 𝑇C
	

The	Block	Diagram	becomes:	

	

The	Front	Panel:	
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It	is	a	good	idea	to	build	this	as	a	SubVIs,	and	then	we	can	easily	reuse	the	Low-pass	filter	in	
all	our	applications.	

We	will	test	the	discrete	low-pass	filter,	to	make	sure	it	works	as	expected:	

We	create	a	simple	test	application	where	we	add	some	random	white	noise	to	a	sine	signal.	
We	will	plot	the	unfiltered	and	the	filtered	signal	to	see	if	the	low-pass	filter	is	able	to	
remove	the	noise	from	the	sine	signal.	

	

We	get	the	following	results:	
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We	see	that	the	filter	works	fine.	The	red	line	is	the	unfiltered	sine	signal	with	white	noise,	
while	the	red	line	is	the	filtered	results.	

[End	of	Example]	

10.2 PI	Controller	
A	PI	controller	may	be	written:	

𝒖 𝒕 = 𝒖𝟎 + 𝑲𝒑𝒆 𝒕 +
𝑲𝒑

𝑻𝒊
𝒆𝒅𝝉
𝒕

𝟎
	

Where	 𝑢	 is	the	controller	output	and	 𝑒	is	the	control	error:	

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)	

Laplace	version:	

𝑢 𝑠 = 𝐾[𝑒 𝑠 +
𝐾[
𝑇\𝑠

𝑒 𝑠 	

Discrete	version:	

We	start	with:	
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𝑢 𝑡 = 𝑢] + 𝐾[𝑒 𝑡 +
𝐾[
𝑇\

𝑒𝑑𝜏
`

]
	

In	order	to	make	a	discrete	version	using,	e.g.,	Euler,	we	can	derive	both	sides	of	the	
equation:	

𝑢 = 𝑢] + 𝐾[𝑒 +
𝐾[
𝑇\
𝑒	

If	we	use	Euler	Forward	we	get:	

𝑢N − 𝑢NAO
𝑇C

=
𝑢],N − 𝑢],NAO

𝑇C
+ 𝐾[

𝑒N − 𝑒NAO
𝑇C

+
𝐾[
𝑇\
𝑒N	

Then	we	get:	

𝒖𝒌 = 𝒖𝒌A𝟏 + 𝒖𝟎,𝒌 − 𝒖𝟎,𝒌A𝟏 + 𝑲𝒑 𝒆𝒌 − 𝒆𝒌A𝟏 +
𝑲𝒑

𝑻𝒊
𝑻𝒔𝒆𝒌 	

Where	

𝑒N = 𝑟N − 𝑦N	

We	can	also	split	the	equation	above	in	2	different	pars	by	setting:	

∆𝑢N = 𝑢N − 𝑢NAO	

This	gives	the	following	PI	control	algorithm:	

𝒆𝒌 = 𝒓𝒌 − 𝒚𝒌	

∆𝒖𝒌 = 𝒖𝟎,𝒌 − 𝒖𝟎,𝒌A𝟏 + 𝑲𝒑 𝒆𝒌 − 𝒆𝒌A𝟏 +
𝑲𝒑

𝑻𝒊
𝑻𝒔𝒆𝒌	

𝒖𝒌 = 𝒖𝒌A𝟏 + ∆𝒖𝒌	

This	algorithm	can	easily	be	implemented	in	LabVIEW	or	other	languages	such	as,	e.g.,	C#	or	
MATLAB.	

For	more	details	about	how	to	implement	this	in	C#,	see	the	Tutorial	“Data	Acquisition	in	
C#”,	available	from	https://www.halvorsen.blog.	 	

LabVIEW	Example:	

Below	we	have	implemented	the	discrete	PI	controller	using	a	Formula	Node	in	LabVIEW:	
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The	PI	controller	is	implemented	as	a	SubVI,	so	it	is	easy	to	reuse	the	algorithm	in	all	our	
applications.	

We	test	our	discrete	PI	controller	with	the	following	application:	
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Block	Diagram:	

	

[End	of	Example]	

	

10.2.1 PI	Controller	as	a	State-space	model	
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We	set	 𝑧 = O
C
𝑒 ⇒ 𝑠𝑧 = 𝑒 ⇒ 𝑧 = 𝑒	

This	gives:	

𝑧 = 𝑒	

𝑢 = 𝐾[𝑒 +
𝐾[
𝑇\
𝑧	

Where	

𝑒 = 𝑟 − 𝑦	

Discrete	version:	

Using	Euler:	

𝑧 ≈
𝑧N=O − 𝑧N

𝑇C
	

Where	 𝑇C	 is	the	Sampling	Time.	

This	gives:	

𝑧N=O − 𝑧N
𝑇C

= 𝑒N	

𝑢N = 𝐾[𝑒N +
𝐾[
𝑇\
𝑧N	

Finally:	

𝒆𝒌 = 𝒓𝒌 − 𝒚𝒌	

𝒖𝒌 = 𝑲𝒑𝒆𝒌 +
𝑲𝒑

𝑻𝒊
𝒛𝒌	

𝒛𝒌=𝟏 = 𝒛𝒌 + 𝑻𝒔𝒆𝒌	

This	algorithm	can	easily	be	implemented	in	LabVIEW	or	other	languages	such	as,	e.g.,	C#	or	
MATLAB.	

For	more	details	about	how	to	implement	this	in	C#,	see	the	Tutorial	“Data	Acquisition	in	
C#”,	available	from	https://www.halvorsen.blog.	 	

10.3 Process	Model	
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We	will	use	a	simple	water	tank	to	illustrate	how	to	create	a	discrete	version	of	a	
mathematical	process	model.	Below	we	see	an	illustration:	

	

A	very	simple	(linear)	model	of	the	water	tank	is	as	follows:	

𝐴`ℎ = 𝐾[𝑢−𝐹fg`	

or	

ℎ =
1
𝐴`

𝐾[𝑢−𝐹fg` 	

Where:	

• ℎ	 [cm]	is	the	level	in	the	water	tank	
• 𝑢	 [V]	is	the	pump	control	signal	to	the	pump	
• 𝐴`	 [cm2]	is	the	cross-sectional	area	in	the	tank	
• 𝐾[	 [(cm3/s)/V]	is	the	pump	gain	
• 𝐹fg`	 [cm3/s]	is	the	outflow	through	the	valve	(this	outflow	can	be	modeled	more	

accurately	taking	into	account	the	valve	characteristic	expressing	the	relation	
between	pressure	drop	across	the	valve	and	the	flow	through	the	valve).	

	

We	can	use	the	Euler	Forward	discretization	method	in	order	to	create	a	discrete	model:	

𝑥 ≈
𝑥N=O − 𝑥N

𝑇C
	

Then	we	get:	

ℎN=O − ℎN
𝑇C

=
1
𝐴`

𝐾[𝑢N−𝐹fg` 	



52	 	 Discretization	 	

Tutorial: Control and Simulation in LabVIEW 

Finally:	

𝒉𝒌=𝟏 = 𝒉𝒌 +
𝑻𝒔
𝑨𝒕

𝑲𝒑𝒖𝒌−𝑭𝒐𝒖𝒕 	

This	model	can	easily	be	implemented	in	a	computer	using,	e.g.,	MATLAB,	LabVIEW	or	C#.	

For	more	details	for	how	to	do	this	in	C#,	see	the	Tutorial	“Data	Acquisition	in	C#”.	

In	LabVIEW	this	can,	e.g.,	be	implemented	in	a	Formula	Node	or	MathScript	Node.	 	

Example:	

In	this	example	we	will	simulate	a	Bacteria	Population.	

In	this	example	we	will	use	LabVIEW	and	the	LabVIEW	Control	Design	and	Simulation	
Module	to	simulate	a	simple	model	of	a	bacteria	population	in	a	jar.	

The	model	is	as	follows:	

birth	rate=bx	

death	rate	=	px2	

Then	the	total	rate	of	change	of	bacteria	population	is:	

𝑥 = 𝑏𝑥 − 𝑝𝑥w	

We	set	b=1/hour	and	p=0.5	bacteria-hour	in	our	example.	

We	will	simulate	the	number	of	bacteria	in	the	jar	after	1	hour,	assuming	that	initially	there	
are	100	bacteria	present.	

We	will	simulate	the	system	using	a	For	Loop	in	LabVIEW	and	implement	the	discrete	model	
in	a	Formula	Node.	

Step	1:	We	start	by	creating	the	discrete	model.	

If	we	use	Euler	Forward	differentiation	method:	

𝑥 ≈
𝑥N=O − 𝑥N

𝑇C
	

Where	 𝑇C	 is	the	Sampling	Time.	

We	get:	

𝑥N=O − 𝑥N
𝑇C

= 𝑏𝑥N − 𝑝𝑥Nw	
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This	gives:	

𝑥N=O = 𝑥N + 𝑇C(𝑏𝑥N − 𝑝𝑥Nw)	

Step	2:	We	implement	the	model	in	the	Formula	Node	and	create	a	Sub	VI.	

	

Step	3:	We	create	the	simulation	program	using	a	For	Loop.	

	

We	get	the	following	results	(note	the	Scaling	Factors	set	in	the	Graph	Properties):	
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[End	of	Example]	

Example:	

Given	the	following	mathematical	model	(nonlinear):	

𝑥 = −𝐾O 𝑥 + 𝐾w𝑢	

We	will	create	a	new	application	in	LabVIEW	where	we	simulate	this	model	using	a	Formula	
Node	to	implement	the	discrete	model.	 	

We	will	use	the	Euler	Forward	method	(because	this	is	a	nonlinear	equation):	

𝑥 ≈
𝑥N=O − 𝑥N

𝑇C
	

This	gives:	

𝑥N=O − 𝑥N
𝑇C

= −𝐾O 𝑥 + 𝐾w𝑢	

𝑥N = 𝑥NAO + 𝑇C −𝐾O 𝑥NAO + 𝐾w𝑢NAO 	

Block	Diagram:	
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Front	Panel:	

	

[End	of	Example]	
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