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Preface

This document explains the basic concepts of using LabVIEW for Control and Simulation
purposes.

For more information about LabVIEW, visit my Blog: https://www.halvorsen.blog.

You need the following software:

e LabVIEW

e LabVIEW Control Design and Simulation Module
e LabVIEW MathScript RT Module

e NI-DAQmMx

e NI Measurement & Automation Explorer
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1Introduction to LabVIEW

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a
platform and development environment for a visual programming language from National
Instruments. The graphical language is named "G". Originally released for the Apple
Macintosh in 1986, LabVIEW is commonly used for data acquisition, instrument control, and
industrial automation on a variety of platforms including Microsoft Windows, various flavors
of Linux, and Mac OS X. Visit National Instruments at www.ni.com.

The code files have the extension “.vi”, which is an abbreviation for “Virtual Instrument”.
LabVIEW offers lots of additional Add-Ons and Toolkits.

1.1 Dataflow programming

The programming language used in LabVIEW, also referred to as G, is a dataflow
programming language. Execution is determined by the structure of a graphical block
diagram (the LV-source code) on which the programmer connects different function-nodes
by drawing wires. These wires propagate variables and any node can execute as soon as all
its input data become available. Since this might be the case for multiple nodes
simultaneously, G is inherently capable of parallel execution. Multi-processing and multi-
threading hardware is automatically exploited by the built-in scheduler, which multiplexes
multiple OS threads over the nodes ready for execution.

1.2 Graphical programming

LabVIEW ties the creation of user interfaces (called front panels) into the development cycle.
LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three
components: a block diagram, a front panel, and a connector panel. The last is used to
represent the VI in the block diagrams of other, calling VIs. Controls and indicators on the
front panel allow an operator to input data into or extract data from a running virtual
instrument. However, the front panel can also serve as a programmatic interface. Thus a
virtual instrument can either be run as a program, with the front panel serving as a user
interface, or, when dropped as a node onto the block diagram, the front panel defines the
inputs and outputs for the given node through the connector pane. This implies each VI can
be easily tested before being embedded as a subroutine into a larger program.



2 Introduction to LabVIEW

The graphical approach also allows non-programmers to build programs simply by dragging
and dropping virtual representations of lab equipment with which they are already familiar.
The LabVIEW programming environment, with the included examples and the
documentation, makes it simple to create small applications. This is a benefit on one side,
but there is also a certain danger of underestimating the expertise needed for good quality
"G" programming. For complex algorithms or large-scale code, it is important that the
programmer possess an extensive knowledge of the special LabVIEW syntax and the
topology of its memory management. The most advanced LabVIEW development systems
offer the possibility of building stand-alone applications. Furthermore, it is possible to create
distributed applications, which communicate by a client/server scheme, and are therefore
easier to implement due to the inherently parallel nature of G-code.

1.3 Benefits

One benefit of LabVIEW over other development environments is the extensive support for
accessing instrumentation hardware. Drivers and abstraction layers for many different types
of instruments and buses are included or are available for inclusion. These present
themselves as graphical nodes. The abstraction layers offer standard software interfaces to
communicate with hardware devices. The provided driver interfaces save program
development time. The sales pitch of National Instruments is, therefore, that even people
with limited coding experience can write programs and deploy test solutions in a reduced
time frame when compared to more conventional or competing systems. A new hardware
driver topology (DAQmxBase), which consists mainly of G-coded components with only a
few register calls through NI Measurement Hardware DDK (Driver Development Kit)
functions, provides platform independent hardware access to numerous data acquisition
and instrumentation devices. The DAQmxBase driver is available for LabVIEW on Windows,
Mac OS X and Linux platforms.

Tutorial: Control and Simulation in LabVIEW



2 Introduction to Control and
Simulation

Control design is a process that involves developing mathematical models that describe a
physical system, analyzing the models to learn about their dynamic characteristics, and
creating a controller to achieve certain dynamic characteristics.

Simulation is a process that involves using software to recreate and analyze the behavior of
dynamic systems. You use the simulation process to lower product development costs by
accelerating product development. You also use the simulation process to provide insight
into the behavior of dynamic systems you cannot replicate conveniently in the laboratory.

Below we see a closed-loop feedback control system:

Controller Actuators Process

K"
’\)
v

Filtering Sensors ¢




3Control and Simulation in
LabVIEW

LabVIEW has several additional modules and Toolkits for Control and Simulation purposes,
e.g., “LabVIEW Control Design and Simulation Module”, “LabVIEW PID and Fuzzy Logic
Toolkit”, “LabVIEW System Identification Toolkit” and “LabVIEW Simulation Interface
Toolkit”. LabVIEW MathScript is also useful for Control Design and Simulation.

e LabVIEW Control Design and Simulation Module
e LabVIEW PID and Fuzzy Logic Toolkit

e LabVIEW System ldentification Toolkit

e LabVIEW Simulation Interface Toolkit

This tutorial will focus on the main aspects in these modules and toolkits.

All Vs related to these modules and toolkits are placed in the Control Design and Simulation
Toolkit:

» o
=
Simulation Control Design  System Identi...
1 DXt =
*OET Fuzzy
PID Fuzzy Logic Sim Interface

3.1 LabVIEW Control Design and Simulation
Module

With LabVIEW Control Design and Simulation Module you can construct plant and control
models using transfer function, state-space, or zero-pole-gain. Analyze system performance
with tools such as step response, pole-zero maps, and Bode plots. Simulate linear, nonlinear,
and discrete systems with a wide option of solvers. With the NI LabVIEW Control Design and

4



5 Control and Simulation in LabVIEW

Simulation Module, you can analyze open-loop model behavior, design closed-loop
controllers, simulate online and offline systems, and conduct physical implementations.

3.1.1 Simulation

The Simulation palette in LabVIEW:

Continuous Li... Monlinear Sys... Discrete Line...

» %!.51 »
ifeg]

Utilities Trim & Linearize  Lookup Tables

B » 23 »

Optimal Design Estimation

The main features in the Simulation palette are:

e Control and Simulation Loop - You must place all Simulation functions within a
Control & Simulation Loop or in a simulation subsystem.

e Continuous Linear Systems Functions - Use the Continuous Linear Systems functions
to represent continuous linear systems of differential equations on the simulation
diagram.

e Signal Arithmetic Functions - Use the Signal Arithmetic functions to perform basic
arithmetic operations on signals in a simulation system.

3.1.2 Control Design

The Control Design palette in LabVIEW:

Tutorial: Control and Simulation in LabVIEW



6 Control and Simulation in LabVIEW

Control Design

o \iew

_:k_ ’ | ’ ’ | uu?’ [ '
= & = Be
Model Constr... Model Inform... Model Conver... Model Interco...
P L L -
[ Sl 3

¥ Lt A C,f;; =
Time Response  Frequency R... Dynamic Char... Model Reduct...
; > - ¥ - ; -
oF = = Axeb
u=-k.x Lo [ ][]'[]
State-Space ... State Feedba... Stochastic Sy... Solvers
v = -
ey

i,
-

-l
PIEN. |
K [hPh

Analytical PID... Predictive Co... Implémentation

3.2 LabVIEW PID and Fuzzy Logic Toolkit

The NI LabVIEW PID and Fuzzy Logic Toolkit add control algorithms to LabVIEW. By
combining the PID and fuzzy logic control functions in this toolkit with the math and logic
functions in LabVIEW software, you can quickly develop programs for automated control.
You may integrate these control tools with the power of data acquisition.

3.2.1 PID Control

The PID palette in LabVIEW:

o \iew
FID FID [ FID | PID
F e BF fom
PID.vi PID Advance... PID Autotuni... PID Lead-Lag.vi
PID | PID | | PID | | PID |
N N 3 I N

PID Setpoint ... PID ControlI... PID Gain Sch... PID QutputR...

| PID_| PID
(L 22 %+ [n)

PID EGUto P... PID Percenta...

3.2.2 Fuzzy Logic

The Fuzzy Logic palette in LabVIEW:

Tutorial: Control and Simulation in LabVIEW



7 Control and Simulation in LabVIEW

4 | Q search | & view

[eal
[ )
L= LE K} |

FL Fuzzy Con... FL Save Fuzz... FL Load Fuzz...

" ¥ .. *
* Aa Then
FL Mew Fuzzy... Variables Membership Rules

3.3 LabVIEW System Identification Toolkit

The “LabVIEW System Identification Toolkit” combines data acquisition tools with system
identification algorithms for plant modeling. You can use the LabVIEW System Identification
Toolkit to find empirical models from real plant stimulus-response information.

The System Identification palette in LabVIEW:

System Identification

> » > 2 >
} B e -+ -+
ot P Pus P 1535
Preprocessing Parametric Frequency Grey-Box Recursive
’ ' ' llll* ’
l-‘D\ @t m D
alfere Ly = LLHit G(s)
MNonparametric Validation Analysis Conversion
G %
Management Utilities
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4Simulation

Simulation is a process that involves using software to recreate and analyze the behavior of
dynamic systems. You use the simulation process to lower product development costs by
accelerating product development. You also use the simulation process to provide insight
into the behavior of dynamic systems you cannot replicate conveniently in the laboratory.
For example, simulating a jet engine saves time, labor, and money compared to building,
testing, and rebuilding an actual jet engine. You can use the LabVIEW Control Design and
Simulation Module to simulate a dynamic system or a component of a dynamic system. For
example, you can simulate only the plant while using hardware for the controller, actuators,
and sensors (Hardware-in-the-loop Simulation).

A dynamic system model is a differential or difference equation that describes the behavior
of the dynamic system.

4.1 Simulation in LabVIEW

Use the Simulation VIs and functions to create simulation applications in LabVIEW. In the
Control Design & Simulation palette we have the Simulation Sub palette:

-

G(s)

Qoﬁf

Control Design  System Identi...

o4 <=h
Fuzzy

Fuzzy Loaqic Sim Interface

Below we see the Simulation Sub palette:



9 Simulation

Simulation

£

Signal Genera... Signal Arithm...  Graph Utilities

» » »
Continuous Li... MNonlinear Sys... Discrete Line...

4 =] 4

) e =

4fe8

Utilities Trim & Linearize  Lookup Tables

’ ’

Optimal Design Estimation

Note! All the “Blocks” in the Simulation palette are not SubViIs, i.e., we cannot double-click
on them and open the Block Diagram because they have none. All the Blocks in the
Simulation palette must be used inside the Control and Simulation Loop (explained below).

Control and Simulation Loop:

In the “Simulation” Sub palette we have the “Control and Simulation Loop” which is very
useful in simulations:

El_

You must place all Simulation functions within a Control & Simulation Loop or in a simulation
subsystem. You also can place simulation subsystems within a Control & Simulation Loop or
another simulation subsystem, or you can place simulation subsystems on a block diagram
outside a Control & Simulation Loop or run the simulation subsystems as stand-alone Vls.

Tutorial: Control and Simulation in LabVIEW



10 Simulation

The Control & Simulation Loop has an Input Node (upper left corner) and an Output Node
(upper right corner). Use the Input Node to configure simulation parameters
programmatically. You also can configure these parameters interactively using the Configure
Simulation Parameters dialog box. Access this dialog box by double-clicking the Input Node
or by right-clicking the border and selecting Configure Simulation Parameters from the
shortcut menu.

Configuration:

When you place these blocks on the diagram you may double-click or right-click and then
select “Configuration...”

Example: Configuration Dialog box

)
For the “Transfer Function” (Simulation = Continuous Linear Systems) block we have
the following Configuration window:

Tutorial: Control and Simulation in LabVIEW



11

Simulation

P Transfer Function Configuration @

Polymorphic instance Feedthrough Parameter Information
[SISO v ‘ Indirect Parameter source
Parameters Configuration Dialog Box v ‘
Parameter Name Yalue ~ o, -n
8 Transfer Function _ =H
B reset? False Model Dimensions
Inputs Outputs
1 1
Current Input Input-Output Model
& 0 E
< > Current Output
Preview 0
Mumerator
b0 b1 b2 b3 b4 bs b6
1
< | >
1
Hs) =557 Denominator
a0 al az a3 a4 as a6
1 2
<1/ >
[ OK ] [ Cancel ][ Help ]

All the different blocks have their own different Configuration window.

Parameter source
Configuration Dialog Box v
¢ Configuration Dialog Box
Terminal

In the Parameter source you may select between:

e Configuration Dialog Box
e Terminal

If you select “Configuration Dialog Box” you enter the configuration in the Configuration

window like we see above, while if you select “Terminal” that specific configuration is set
from the Block Diagram like this:

Transfer Function

| 1]
2s+1

Icon Style:

When you place the block on the block diagram you may select how that should appear.
Right-click on the block/icon and select “Icon Style”:

Tutorial: Control and Simulation in LabVIEW



12 Simulation

oo

|'” Yisible Items »

Help

Description and Tip...
Breakpoint

Continuous Linear Systems Palette
Mumeric Palette
Create

v v v v v

Replace

Reverse Terminals

Icon Style » | ~ Static

Configuration... Dynamic
Text Only
Express

Properties

Example: Icon Style

)
For the “Transfer Function” (Simulation = Continuous Linear Systems) block we have
the following different icon styles:

Static:

oeq

Dynamic:

| 1 ]
2s+1

Text Only:

pinput uik) output ‘:,-‘H i
Transfer Function = ...

reset? = False state x(k)¥

Express:
R =14
N
2s+1 i
» input uik)

Transfer Function = ...
reset? = False

¥

We see for the Dynamic and Express styles that the appearance changes according to
configuration parameters we set.

Tutorial: Control and Simulation in LabVIEW



13 Simulation

| personally prefer the “static” icon style because it does not require lots of space on the
diagram.

4.2 Simulation Subsystem

You may create a Simulation Subsystem (File - New...):

B New ‘;‘@E]
Create New Description
H [_!ﬂ Polymorphic Y1 File Edit View Project Operate Tools
i éypjm;:cotm Template @"EI -
-~

ye .
“ligd Empty Project
= Project from Wizard input output

[® Real-Time Project ﬁ <'> e O
=5 [ S NP
J@) Instrument Driver Project oo = —
o= -
0] Mobile Project
[=}{ Other Files

B Simulation Subsystem < 5
() Statechart

v

@) Class Creates a simulation subsystem.
[# Custom Control
@ Global Variable S@mulat!on subsystems are VIs that can consist of )
™3 Librar Simulation ¥Is and functions that can be used in or outside
L i ¥ o a Simulation Loop. The block diagram of a simulation
[} Multi-panel Application subsystem has a pale yellow background to distinguish the
L& Runtime Menu < >
) ¥Control
&3 [] add to project:
b
< >

OK ][ Cancel ][ Help

The Simulation Subsystem is very useful when dealing with larger simulation systems in
order to create a more structured code. | recommend that you (always) use this feature.

The Simulation Subsystem is almost equal to a normal LabVIEW Block Diagram but notice the
background color is slightly darker.

Note! In order to open the Simulation Subsystem, right-click and select “Open Subsystem”.

The Simulation Subsystem may also be represented by different icons. If you select
“dynamic” icon style, you will see a “miniature” version of the subsystem like this:

Tutorial: Control and Simulation in LabVIEW



14 Simulation

Il
=4 You may drag in the corner in order to increase or decrease the dynamic icon.

If you select “static” icon style you see the icon you created with the Icon Editor.

Like this: El

4.3 Continuous Linear Systems

In the “Continuous Linear Systems” Sub palette we want to create a simulation model:

Continuous Linear Systems

Transport Delay
=]

oeR
[AI(E] cE-a
(1) =

State-Space  Transfer Fun... Zero-Pole-Gain

Continuous O... Continuous K...

The most used blocks probably are Integrator, Transport Delay, State-Space and Transfer

Function.

Tutorial: Control and Simulation in LabVIEW
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When you place these blocks on the diagram you may double-click or right-click and then

select “Configuration...”

009
Integrator - Integrates a continuous input signal using the ordinary differential

equation (ODE) solver you specify for the simulation.

The Configuration window for the Integrator block looks like this:

oeq

Transport Delay - Delays the input signal by the amount of time you specify.

Polymorphic instance Parameter Information
Scalar v Parameter source
Parameters Configuration Dialog Box v
Parameter Name Yalue ~ 5603 Gy

B limit type none L]

& upper limit 1]

B lower limit 0

B initial condition for r¢ 0

B reset type none

B reset 0 v
< >

Preview

[ OK ][ Cancel ” Help

The Configuration window for the Transport Delay block looks like this:

oeq

Transfer Function - Implements a system model in transfer function form. You define
the system model by specifying the Numerator and Denominator of the transfer function

equation.

B Transport Delay Configuration @

Polymorphic instance Feedthrough Parameter Information
lScaIar v | |Indirect v ‘ Parameter source
Parameters Configuration Dialog Box v
Parameter Name Value ~ T T
initial condition

S initial condition
| © intial conditon 10 [P

B delay (s) 1

B max delay (s) 1

v

< >
Preview

I OK ][ Cancel ][ Help ]

Tutorial: Control and Simulation in LabVIEW
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Simulation

The Configuration window for the Transfer Function block looks like this:

B Transfer Function Configuration @

Polymorphic instance

Feedthrough

Parameter Information

SISO | |Indirect Parameter source
Parameters Configuration Dialog Box v ]
Parameter Name Yalue ~ o, N =
S TransferFunction [ | EHcs
B reset? False Model Dimensions
Inputs Outputs
1 1
Current Input Input-Output Madel
v g (m]
< | > Current Output
Preview 0
Murmerator
bo bt bz b3 b4 bs b6
1
1 < >
Hs =537 Denominator
a0 al az a3 a4 as ab
1 1
< >
OK I [ Cancel ][ Help ]

)
State-Space - Implements a system model in state-space form. You define the system

model by specifying the input, output, state, and direct transmission matrices.

The Configuration window for the State-Space block looks like this:

B! State-Space Configuration @

Polymorphic instance
SISO v

Parameters
Parameter Name

B jinitial state (x0)
B reset?
B reset state {xr)

<

Preview

5 State-Space _

Feedthrough
Indirect
Value ~
[0]
False
[0]

Parameter Information

Parameter source

hadt | _
vty |

ERENIEC
110 [|uft)

lConfiguration Dialog Box v ‘
== WC I
Model Dimensions
Inputs States QOutputs
1 1 2 1
A B
x0 ud
x0 -1 1
C D
0 1 0
l OK ] [ Cancel ][ Help

]

Signal Arithmetic:

The “Signal Arithmetic” Sub palette is also useful when creating a simulation model:

Tutorial: Control and Simulation in LabVIEW



17 Simulation

Signal Arithmetic
1 Q Search | oo Wiew™

> O [

Gain Summation Multiplication

Example: Simulation Model

Below we see an example of a simulation model created in LabVIEW.

B Integrator. vi Block Diagram E]@

File Edit View Project Operate Tools

[D]@] ©[n][@][25]fealm—

input output

T

~

<

Example: Simulation

P Simulation Examle.vi Block Diagram

File Edit View Project Operate Tools Window Help

\@||E||bu|la’|uﬂ* | 13pt Application Font v”;pv"‘.‘u:v‘ |C§)v"%

Bampling Time
DBL K

|*Runge-Kutta 1 (Euler) 'I—b

|
[€

<

Notice the following:

Tutorial: Control and Simulation in LabVIEW



18 Simulation

Click on the border of the simulation loop and select “Configure Simulation Parameters...”

Visible Items >
Help

Description and Tip...

Breakpoint >
Simulation Palette >

J Auto Grow

Configure Simulation Parameters. ..

Properties

The following window appears (Configure Simulation Parameters):

B! Configure Simulation Parameters @ B! Configure Simulation Parameters @

Simulation Parameters ‘ Timing Parameters Simulation Parameters ‘ Timing Parameters ‘

nable Synchronized Timing
Simulation Time
Synchronize Loop to Timing Source

Initial Time (s)

’0 - Timing Source
Source type
Solver Method 1 z Clock
ODE Solver

1 kHz <reset at structure start>

’Runge-Kutta 1 {Euler) v ‘ [Imanfinf Check

Other <defined by source name or terminal >

Continuous Time Step and Tolerance

Step Size (s) Source name

0,1 v \1 kHz

Minimum Step Size (s) Maximum Step Size (s)

1E-10 1 Loop Timing Attributes

Relative Tolerance

Absolute Tolerance

o
1]
=1,
[=]
o

[] Auto Period

LY 1E7 Offset { Phase Priority

0 v 100 =
Discrete Time Step Deadline Timeout {ms)
Discrete Step Size (s) -1 = -1 A
0,1 Auto Discrete Time

Processor Assignment
Mode Processor

Automatic v -2

—

[ OK ] [ Cancel ] [ Help ] OK ] [ Cancel ] [ Help ]

In this window you set some Parameters regarding the simulation, some important are:

e Final Time (s) — set how long the simulation should last. For an infinite time set “Inf”.
e Enable Synchronized Timing - Specifies that you want to synchronize the timing of
the Control & Simulation Loop to a timing source. To enable synchronization, place a

Tutorial: Control and Simulation in LabVIEW



19 Simulation

checkmark in this checkbox and then choose a timing source from the Source type
list box.

Click the Help button for more details.

You may also set some of these Parameters in the Block Diagram:

Eampling Tima

|[DBL
|*Runge-Kutta 1 {Euler) vIN

You may use the mouse to increase the numbers of Parameters and right-click and select
“Select Input”.

Exercises

Exercise: Simulation of a spring-mass damper system

In this exercise you will construct a simulation diagram that represents the behavior of a
dynamic system. You will simulate a spring-mass damper system.

F(t) — cx(t) — kx(t) = m&(t)

where t is the simulation time, F(t) is an external force applied to the system, c is the
damping constant of the spring, k is the stiffness of the spring, m is a mass, and x(t) is the
position of the mass. x is the first derivative of the position, which equals the velocity of
the mass. X is the second derivative of the position, which equals the acceleration of the
mass.

The following figure shows this dynamic system.

) ‘7 Fit)

—|— X

Tutorial: Control and Simulation in LabVIEW



20 Simulation

The goal is to view the position x(t) of the mass m with respect to time t. You can calculate
the position by integrating the velocity of the mass. You can calculate the velocity by
integrating the acceleration of the mass. If you know the force and mass, you can calculate
this acceleration by using Newton's Second Law of Motion, given by the following equation:

Force = Mass x Acceleration
Therefore,
Acceleration = Force / Mass

Substituting terms from the differential equation above yields the following equation:
X = ! F x — k
=—(F —cx —kx
X ( cx )

You will construct a simulation diagram that iterates the following steps over a period of
time.

Creating the Simulation Diagram

You create a simulation diagram by placing a Control & Simulation Loop on the LabVIEW
block diagram.

Launch LabVIEW and select FilenNew VI to create a new, blank VI.

Select Window»Show Block Diagram to view the block diagram. You also can press
the <Ctrl-E> keys to view the block diagram.

3. If you are not already viewing the Functions palette, select View»Functions Palette to
display this palette.

4. Select Control Design & Simulation»Simulation to view the Simulation palette.

Click the Control & Simulation Loop icon.

6. Move the cursor over the block diagram. Click to place the top left corner of the loop,
drag the cursor diagonally to establish the size of the loop, and click again to place
the loop on the block diagram.

v

The simulation diagram is the area enclosed by the Control & Simulation Loop. Notice the
simulation diagram has a pale yellow background to distinguish it from the rest of the block
diagram. You can resize the Control & Simulation Loop by dragging its borders.

Configuring Simulation Parameters

The Control & Simulation Loop contains the parameters that define how the simulation
executes. Complete the following steps to view and configure these simulation parameters.

1. Double-click the Input Node, attached to the left side of the Control & Simulation
Loop, to display the Configure Simulation Parameters dialog box. You also can right-

Tutorial: Control and Simulation in LabVIEW
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Simulation

7.

click the loop border and select Configure Simulation Parameters from the shortcut
menu.

Ensure the value of the Final Time (s) numeric control is 10, which specifies that this
tutorial simulates ten seconds of time.

Click the ODE Solver pull-down menu to view the list of ODE solvers the Control
Design and Simulation Module includes. If the term (variable) appears next to an ODE
solver, that solver has a variable step size. The other ODE solvers have a fixed step
size. Ensure a checkmark is beside the default ODE solver Runge-Kutta 23 (variable).
Because this ODE solver is a variable step-size solver, you can specify the Minimum
Step Size (s) and Maximum Step Size (s) this ODE solver can take. Enter 0.01 in the
Maximum Step Size (s) numeric control to limit the size of the time step this ODE
solver can take.

Click the Timing Parameters tab to access parameters that control how often the
simulation executes.

Ensure the Synchronize Loop to Timing Source checkbox does not contain a
checkmark. This option specifies that the simulation executes without any timing
restrictions. Use this option when you want the simulation to run as fast as possible.
If you are running this simulation in real-time, you can place a checkmark in this
checkbox and configure how often the simulation executes.

Click the OK button to save changes and return to the simulation diagram.

Building the Simulation

The next step is to build the simulation by placing Simulation functions on the simulation

diagram and wiring these functions together. Note that you can place most Simulation

functions only on the simulation diagram, that is, you cannot place Simulation functions on a

LabVIEW block diagram. Complete the following steps to build the simulation of this dynamic

system.

Placing Functions on the Simulation Diagram

1.

Open the Simulation palette.

Select the Signal Arithmetic palette and place a Multiplication function on the
simulation diagram. You will use this function to divide the force by the mass to
calculate the acceleration.

Double-click the Multiplication function to display the Multiplication Configuration
dialog box. You can double-click most Simulation functions to view and change the
parameters of that function.

The function currently displays two x symbols on the left side of the dialog box. This
setting specifies that both incoming signals are multiplied together. Click the bottom
x symbol to change it to a + symbol. This Multiplication function now divides the top
signal by the bottom signal.

Click the OK button to save changes and return to the simulation diagram.
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6. Right-click the Multiplication function and select Visible Items»Label from the
shortcut menu. Double-click the Multiplication label and enter Calculate Acceleration
as the new label.

7. Return to the Simulation palette and select the Continuous Linear Systems palette.

8. Place an Integrator function on the simulation diagram. You will use this function to
calculate velocity by integrating acceleration.

9. Label this Integrator function Calculate Velocity.

10. Press the <Ctrl> key and click and drag the Integrator function to another location on
the simulation diagram. This action creates a copy of the Integrator function, which
you will use to calculate position by integrating velocity. Label this new Integrator
function Calculate Position.

11. Select the Graph Utilities palette and place two SimTime Waveform functions on the
simulation diagram. You will use these functions to view the results of the simulation
over time.

12. Each SimTime Waveform function has an associated Waveform Chart. Label the first
waveform chart Velocity and the second waveform chart Position.

13. Arrange the functions to look like the following simulation diagram.

14. Save this VI by selecting File»Save. Save this VI to a convenient location as “Spring-

Mass Damper Example.vi”.

The Block Diagram should now look like this:

Input Node Control & Simulation Loop Qutput Node

N o

Calculate Acceleration

Calculate Velocity  Simulation Time Waveform 2

ST
.

Calculate Position

Position

Wiring the Simulation Functions Together

The next step is wiring the functions together to represent the flow of data from one

function to another.

Note! Wires on the simulation diagram include arrows that show the direction of the
dataflow, whereas wires on a LabVIEW block diagram do not show these arrows.
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Complete the following steps to wire these functions together.

1.

Right-click the Operandl input of the Calculate Acceleration function and select
Create»Control from the shortcut menu to add a numeric control to the front panel
window.

Label this control Force.

Double-click this control on the simulation diagram. LabVIEW displays the front panel
and highlights the Force control.

Display the block diagram and create a control for the Operand2 input of the
Calculate Acceleration function. Label this new control Mass.

Wire the Result output of the Calculate Acceleration function to the input input of
the Calculate Velocity function.

Wire the output output of the Calculate Velocity function to the input input of the
Calculate Position function.

Right-click the wire you just created and select Create Wire Branch from the shortcut
menu. Wire this branch to the Value input of the SimTime Waveform function that
has the Velocity waveform chart.

Wire the output output of the Calculate Position function to the Value input of the
SimTime Waveform function that has the Position waveform chart.

The Block Diagram should now look like this:

Input Node Control & Simulation Loop Qutput Mode

Force Calculate Acceleration
»

Mass ' Calculate Yelocity

. .

[Position

Running the Simulation

You now can run this simulation to test that the data is flowing properly through the

Simulation functions. Complete the following steps to run this simulation.

Tutorial: Control and Simulation in LabVIEW



24 Simulation

1. Select Window»Show Front Panel, or press <Ctrl-E>, to view the front panel of this
simulation. The front panel displays the following objects: a control labeled Force, a
control labeled Mass, a waveform chart labeled Velocity, and a waveform chart
labeled Position.

If necessary, rearrange these controls and indicators so that all objects are visible.
Enter -9.8 in the Force numeric control. This value represents the force of gravity, 9.8
meters per second squared, acting on the dynamic system.
. Enter 1 in the Mass numeric control. This value represents a mass of one kilogram.
5. Click the Run button, or press the <Ctrl-R> keys, to run the VI.

The Front Panel should look like this:

AForce
-9.8
o

Mass
,

o F

velocity Plot 0 ]

Amplitude

Simulation Time

Position Plot 0 ,

Amplitude

Simulation Time

In the Figure above notice that the force of gravity causes the mass position and velocity to
constantly decrease. However, in the real world, a mass attached to a spring oscillates up
and down. This simulated spring does not oscillate because the simulation diagram does not
represent damping or stiffness. You must represent these factors to have a complete
simulation of the dynamic system.

Representing Damping and Stiffness
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Representing damping and stiffness involves feeding back the velocity and position, each
multiplied by a different constant, to the input of the Calculate Acceleration function. Recall
the following differential equation this VI simulates.

F(t) — cx(t) — kx(t) = mi(t)

In the previous equation, notice you multiply the damping constant c by the velocity of the
mass X. You multiply the stiffness constant k by the mass position x(t). You then subtract
these quantities from the external force applied to the mass.

Complete the following steps to represent damping and stiffness in this dynamic system
model.

1. View the simulation diagram.

Select the Signal Arithmetic palette and place a Summation function on the
simulation diagram. Move this function to the left of the Force and Mass controls.

3. Double-click the Summation function to configure its operation. By default, the
Summation function displays the following three input terminals: a @ symbol, a +
symbol, and a — symbol. This configuration subtracts one input signal from another.

4. Click the @ symbol twice to change this terminal to the — symbol. This Summation
function now subtracts the top and bottom input signals from the left input signal.

5. Click the OK button to save changes and return to the simulation diagram.

Select the Signal Arithmetic palette and place a Gain function on the simulation
diagram. Move this function above the existing simulation diagram code but still
within the Control & Simulation Loop.

7. The input of the Gain function is on the left side of the function, and the output is on
the right side. You can reverse the direction of these terminals to indicate feedback
better. Right-click the Gain function and select Reverse Terminals from the shortcut
menu. The Gain function now points toward the left side of the simulation diagram.

8. Label this Gain function Damping.

9. Press the <Ctrl> key and drag the Gain function to create a separate copy. Move this
copy below the existing simulation diagram code but still within the Control &
Simulation Loop. Label this function Stiffness.

10. Right-click the wire connecting the Force control to the Calculate Acceleration
function and select Delete Wire Branch from the shortcut menu. Move the Force
control to the left of the Summation function, and wire this control to the Operand2
input of the Summation function.

11. Create wires 1-5 as indicated in the Figure below. The simulation diagram now fully
represents the equation that defines the behavior of the dynamic system.

12. Press <Ctrl-S> to save the VI.

The Block Diagram should now look like this:
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Input Node Control & Simulation Loop Qutput Mode

Damping

Calculate Acceleration

* | kel

Calculate Velocity Simultion Time Waveform 2

I Welocit

Calculate Position

Stiffness Simulation Time Waveform

[ |Position

Configuring the Stiffness of the Spring

Before you run the simulation again, you must configure the stiffness of the simulated

spring. Complete the following steps to configure this Simulation function.

Double-click the Stiffness function to display the Gain Configuration dialog box.
Enter 100 in the gain numeric control. This value represents a stiffness of 100
Newtons per meter.

Click OK to return to the simulation diagram. Notice that the Stiffness function
displays 100.

Display the front panel and ensure the Force control is set to -9.8 and the Mass
control is set to 1.

Run the simulation. The Velocity and Position charts display the behavior of the mass
as the spring oscillates. Notice the new behavior compared to the last time you ran
the simulation. This time, the velocity and position do not constantly decrease. Both
values oscillate, which is how a spring behaves in the real world.

Change the value of the Mass control to 10 and run the simulation again. Notice the
different behavior in the Velocity and Position charts. The 10 kg mass forces the
spring to oscillate less frequently and within a smaller velocity/position range.

The Front Panel should look like this:
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Simulation Time
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Configuring Simulation Functions Programmatically

The previous section provided information about configuring Simulation functions using the
configuration dialog box. Instead of using the configuration dialog box, you can improve the
interactivity of a simulation by creating front panel controls that configure a Simulation

function programmatically. Complete the following steps to configure the Stiffness function

programmatically.

1.

If you are not already viewing the Context Help window, press <Ctrl-H> to display this
window.

Display the block diagram and move the cursor over the Stiffness function. Notice
this function has only one input terminal.

Display the Gain Configuration dialog box of the Stiffness function.

Select Terminal from the Parameter source pull-down menu. This action disables the
gain numeric control.

Click the OK button to save changes and return to the block diagram.

Move the cursor over the Stiffness function. Notice the Context Help window displays
the Gain function with the new gain input terminal.

Create a control for this input, and label the control gain (k).
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8. View the front panel. Notice the new control gain (k). Enter a value of 100 for this
control and run the simulation. Notice the behavior is exactly the same as when you
used the configuration dialog box to configure the Stiffness function.

Modularizing Simulation Diagram Code

You can create simulation subsystems to divide simulation diagrams into components that
are modular, reusable, and independently verifiable. Complete the following steps to create
a simulation subsystem from this simulation diagram.

1. View the simulation diagram.

2. Select the Calculate Acceleration, Calculate Velocity, and Calculate Position functions
by pressing the <Shift> key and clicking each function.

3. Select Edit»Create Simulation Subsystem. LabVIEW replaces these three functions
with a single function that represents the simulation subsystem, which is circled in
the Figure below. The inputs and outputs of the simulation subsystem include the
inputs and outputs of all the functions you selected. Also, notice the amount of blank
space on the simulation diagram. Because you combined three functions into a
subsystem, you can resize the Control & Simulation Loop and reposition the functions
to make the simulation diagram easier to view.

4. Press <Ctrl-S> to save the simulation diagram. LabVIEW prompts you to save the
simulation subsystem you just created. Click the Yes button and save this simulation
subsystem as “Newton.vi”. You now have a simulation subsystem that obtains the
position of a mass by using Newton's Second Law of Motion.

Note! You can resize the simulation subsystem to better display its simulation diagram. You
also can double-click the simulation subsystem to display the configuration dialog box of that
simulation subsystem.

The simulation subsystem should look like this:

Input Node Control & Simulation Loop Qutput Node

Damping

gain

»
Stiffness

<
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Editing the Simulation Subsystem

Edit the simulation subsystem “Newton.vi” by right-clicking this subsystem and selecting
Open Subsystem from the shortcut menu. View the simulation diagram.

Notice this simulation subsystem does not contain a Control & Simulation Loop, but the
entire background is pale yellow to indicate a simulation diagram. If you place this
simulation subsystem in a Control & Simulation Loop, the simulation subsystem inherits all
simulation parameters from the Control & Simulation Loop.

If you run this subsystem as a stand-alone VI, you can configure the simulation parameters
by selecting Operate»Configure Simulation Parameters. Any parameters you configure using
this method do not take effect when the subsystem is within another Control & Simulation
Loop. If you place this simulation subsystem on a block diagram outside a Control &
Simulation Loop, you can configure the simulation parameters by double-clicking the
simulation subsystem to display the configuration dialog box of that simulation subsystem.

Configuring Simulation Parameters Programmatically

Earlier in this exercise, you used the Configure Simulation Parameters dialog box to
configure the parameters of “Spring-Mass Damper Example.vi”. You also can configure
simulation parameters programmatically by using the Input Node of the Control &
Simulation Loop. Complete the following steps to configure simulation parameters
programmatically.

1. View the simulation diagram of “Spring-Mass Damper Example.vi”.

2. Move the cursor over the Input Node to display resizing handles.

3. Drag the bottom handle down to display all available Node inputs. You use these
inputs to configure the simulation parameters without displaying the Configure
Simulation Parameters dialog box. You also can right-click the Input Node and select
Show All Inputs from the shortcut menu.

Notice the gray boxes next to each input. These boxes display values you configure in
the Configure Simulation Parameters dialog box. For example, the third gray box
from the top displays 10.0000, which is the value of the Final Time numeric control
that you configured. The fifth gray box from the top displays RK 23. This box specifies
the current ODE solver, which you configured as Runge-Kutta 23 (variable). Move the
cursor over the left edge of each Node input to display the label of that input.

4. Right-click the input terminal of the ODE Solver input and select Create»Constant
from the shortcut menu. A block diagram constant appears outside the Control &
Simulation Loop. The value of this constant is Runge-Kutta 1 (Euler), which is
different than what you configured in the Configure Simulation Parameters dialog
box. However, the gray box disappears from the Input Node, indicating that the value
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of this parameter does not come from the Configure Simulation Parameters dialog
box. Values that you programmatically configure override any settings you made in
the Configure Simulation Parameters dialog box.

The Input Node should now look like the following figure:

» At [0L10000!
|*Runge-Kutta 1 {Euler) vHH» 1
: 0.000001

Summary

This exercise introduced you to the following concepts:

The simulation diagram reflects the dynamic system model you want to simulate. This
dynamic system model is a differential or difference equation that represents a dynamic
system.

The Control & Simulation Loop contains the parameters that define the behavior of the
simulation. The Control & Simulation Loop also defines the visual boundary of the simulation
diagram. Double-click the Input Node of the Control & Simulation Loop to access
configurable parameters. You also can expand the Input Node to access these parameters.

The Simulation palette contains the Vis and functions you use to build a simulation. You can
double-click most Simulation functions to display a dialog box that configures that function.
You also can create input terminals for function inputs.

You can create simulation subsystems to modularize, encapsulate, validate, and re-use
portions of the simulation diagram.
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Currently, the Proportional-Integral-Derivative (PID) algorithm is the most common control
algorithm used in industry. Often, people use PID to control processes that include heating
and cooling systems, fluid level monitoring, flow control, and pressure control. In PID
control, you must specify a process variable and a setpoint. The process variable is the
system parameter you want to control, such as temperature, pressure, or flow rate, and the
setpoint is the desired value for the parameter you are controlling. A PID controller
determines a controller output value, such as the heater power or valve position. The
controller applies the controller output value to the system, which in turn drives the process
variable toward the setpoint value.
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[Wikipedia]

The PID controller compares the setpoint (SP) to the process variable (PV) to obtain the error

(e).

e=SP-PV

Then the PID controller calculates the controller action, u(t), where Kc is controller gain.
u(t) = KJ e+

Ti is the integral time in minutes, also called the reset time, and Td is the derivative time in
minutes, also called the rate time.

The following formula represents the proportional action.
uy(t) = Ke
The following formula represents the integral action.
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K, p:
uyt) = Ti.[oedr

The following formula represents the derivative action.

. ~de
uD(t) = K(I-ddT

5.1 PID Control in LabVIEW

In the “PID” Sub palette we have the functions/SubVIs for PID Control. | recommend that

you use the “PID Advanced.vi”.

@ Q,,Search o Aligw ¥

FID -Capll-o PID_ PID
4 £l
B o i BfF -
PID.vi PID Advance... PID Autotuni... PID Lead-Lag.vi
FID PID PID PID
T&' N E N i
PID Output R...

PID Control I... PID Gain Sch...

PID Setpoint ...
[ PID | PID
[fn+ %% TG []

PIDEGUto P... PID Percenta...

Example: PID Control
Below we see how we can use the PID Advanvanced.vi in order to control a simulated

Model.
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5.2 Auto-tuning

The LabVIEW PID and Fuzzy Logic Toolkit include a VI for auto-tuning.

Context Help

PID Autotuning.vi

autotuning parameters
output range C—
setpoint PID output
process variable - BJ: “ tuning completed?
PID gains mi, o ‘E:PID gains out
dt (s) H dt out {s)
reinitialize? {F) -

autatune? (F)

Includes the Autotuning Wizard in addition to the basic PID
algarithm. You can use this VI instead of the PID VI, which
implements a basic PID algorithm. Use the additional inputs and
output of this VI to set autotuning parameters, invoke the
Autotuning Wizard, and update the PID gains.

Detailed help

(>

. S
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6 Control Design

Control design is a process that involves developing mathematical models that describe a
physical system, analyzing the models to learn about their dynamic characteristics, and

creating a controller to achieve certain dynamic characteristics.
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6.1 Control Design in LabVIEW

Control Design palette:

Control Design

o Vigw

&

Time Response Freduency [rana

e @ [ b ' »
Model Constr... Model Inform... Model Conver... Model Interco...
P ' » | A Fa-,
Tt v € 3

t Ll'mtf » c,c:; ~=}=

o

-

puu |

L

3.

~

i o
Al
@

00 Model Reduct...

@ ) x=b’
= EH=0
Staté-Space ... State Feedba... Stochastic Sy... Solvers
' > ' »
e, I? <7 T@:
0. H
N)’ K ChPh “‘
Analytical PID... Predictive Co... Implementation

34

e u
n »| Controller Actuators ProceE—'
‘ y



7System ldentification

7.1 System ldentification in LabVIEW

The “System ldentification Toolkit” combines data acquisition tools with system
identification algorithms for accurate plant modeling. You can take advantage of LabVIEW
intuitive data acquisition tools such as the DAQ Assistant to stimulate and acquire data from
the plant and then automatically identify a dynamic system model. You can convert system
identification models to state-space, transfer function, or pole-zero-gain form for control
system analysis and design. The toolkit includes built-in functions for common tasks such as
data preprocessing, model creation, and system analysis. Using other built-in utilities, you
can plot the model with intuitive graphical representation as well as store the model.

System Identification palette:

System Identification

4 4 »
-+ -+
2. [P =5
Preprocessing Frequency Grey-Box Recursive
» » 1 2 nl-* 12
e 4 < o B N
alleee g =] LHit G(s)
MNonparametric Validation Analysis Conversion
2 2
- 3®
Management Utilities
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8Fuzzy Logic

Fuzzy logic is a method of rule-based decision making used for expert systems and process
control. Fuzzy logic differs from traditional Boolean logic in that fuzzy logic allows for partial
membership in a set. You can use fuzzy logic to control processes represented by subjective,
linguistic descriptions.

A fuzzy system is a system of variables that are associated using fuzzy logic. A fuzzy
controller uses defined rules to control a fuzzy system based on the current values of input

variables.
Crisp Input
_Datai] — Rule Base
IF ... AND ... THEN ...
Crisp Input IF .. AND ... THEN ... S’Jfgm
_Data2| ] _:> Data
IF ... AND ... THEN ... —> >
Crisp Input
Datan N _:>
IF ... AND ... THEN ...
Fuzzification Implementation of a Defuzzification
Linguistic Control Strategy

[Wikipedia]

8.1 Fuzzy Logic in LabVIEW

The Fuzzy Logic palette in LabVIEW:
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9 LabVIEW MathScript

Requires: MathScript RT Module

The “LabVIEW MathScript Window” is an interactive interface in which you can enter .m file
script commands and see immediate results, variables and commands history. The window
includes a command-line interface where you can enter commands one-by-one for quick
calculations, script debugging or learning. Alternatively, you can enter and execute groups of
commands through a script editor window.

As you work, a variable display updates to show the graphical / textual results and a history
window tracks your commands. The history view facilitates algorithm development by
allowing you to use the clipboard to reuse your previously executed commands.

You can use the “LabVIEW MathScript Window” to enter commands one at time. You also
can enter batch scripts in a simple text editor window, loaded from a text file, or imported
from a separate text editor. The “LabVIEW MathScript Window” provides immediate
feedback in a variety of forms, such as graphs and text.
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® LabVIEW MathScript

File Edit View Operate Tools Window Help

C:\tempiLabVIEW Datalsimple.m |

[

Output Window ‘ Yariables I Script | History |
ans = ~
—_— 1 ;{'
N[
-0.95892
function [r] = simple(a)
-~ r = sin{a)
A=
1 2
&l 4
>>inv(4)
ans =
= 1
1.5 -0.5
>>det (i)
ans =
-2 3
v
Command Window
-~
™
56 e Line: 3, Column: 11

9.1 Help

You may also type help in your command window

>>help

Or more specific, e.g.,

>>help plot

9.2 Examples

| advise you to test all the examples in this text in LabVIEW MathScript in order to get
familiar with the program and its syntax. All examples in the text are outlined in a frame like

this:

>>
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This is commands you should write in the Command Window.

You type all your commands in the Command Window. | will use the symbol “>>” to
illustrate that the commands should be written in the Command Window.

Example: Matrices

Defining the following matrix

The syntax is as follows:

> A = [1 2;0 3]

Or

>> A = [1,2;0,3]

If you, for an example, want to find the answer to

a+ b,wherea =4,b =3

>>a=4
>>b=3
>>a+b

MathScript then responds:

ans =
7

MathScript provides a simple way to define simple arrays using the syntax:
“init:increment:terminator”. For instance:

>> array = 1:2:9
array =
13579

defines a variable named array (or assigns a new value to an existing variable with the name
array) which is an array consisting of the values 1, 3, 5, 7, and 9. That is, the array starts at 1
(the init value), increments with each step from the previous value by 2 (the increment
value), and stops once it reaches (or to avoid exceeding) 9 (the terminator value).

The increment value can actually be left out of this syntax (along with one of the colons), to
use a default value of 1.

>> ari = 1:5
ari =
1 2 3 45
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assigns to the variable named ari an array with the values 1, 2, 3, 4, and 5, since the default
value of 1 is used as the incrementer.

Note that the indexing is one-based, which is the usual convention for matrices in
mathematics. This is atypical for programming languages, whose arrays more often start
with zero.

Matrices can be defined by separating the elements of a row with blank space or comma and
using a semicolon to terminate each row. The list of elements should be surrounded by
square brackets: []. Parentheses: () are used to access elements and subarrays (they are also
used to denote a function argument list).

> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]
A:
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1
>> A(2,3)
ans =
11

Sets of indices can be specified by expressions such as "2:4", which evaluates to [2, 3, 4]. For
example, a submatrix taken from rows 2 through 4 and columns 3 through 4 can be written
as:

>> A(2:4,3:4)
ans =

11 8

7 12

14 1

A square identity matrix of size n can be generated using the function eye, and matrices of
any size with zeros or ones can be generated with the functions zeros and ones, respectively.

>> eye (3)
ans =

100

010

001
>> zeros (2, 3)
ans =

000

000
>> ones (2, 3)
ans =

1

11
111
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9.3 Useful commands

Here are some useful commands:

Command Description
eye(x) , eye(x,y) Identity matrix of order x
ones (x) , ones(x,y) A matrix with only ones
zeros (x) , zeros(x,y) A matrix with only zeros
diag([x y z]) Diagonal matrix
size (A) Dimension of matrix A
A’ Inverse of matrix A

9.4 Plotting

This chapter explains the basic concepts of creating plots in MathScript.
Topics:

e Basic Plot commands

Example: Plotting

Function plot can be used to produce a graph from two vectors x and y. The code:

x = 0:p1/100:2*pi;
y = sin(x);
plot (x,v)

Tutorial: Control and Simulation in LabVIEW



10 Discretization

Often, we need to develop discrete algorithms of our process. In addition, we might need to
create our own discrete PI(D) controller. A discrete low-pass filter is also good to have.

There exists lots of different discretization methods like the “Zero Order Hold” (ZOH)
method, Tustin’s method and Euler’s methods (Forward and Backward). We will focus on
Eulers methods in this document, because they are very easy to use.

Euler Forward discretization method:

. Xk+1 T Xk

~

T
Euler Backward discretization method:
i~ Xk — Xk-1
T

T, is the Sampling Time.

10.1 Low-pass Filter

The transfer function for a first-order low-pass filter may be written:

ye(s) 1
y(s) Tys+1

H(s) =

Where T; is the time-constant of the filter, y(s) is the filter input and y;(s) is the filter
output.

Discrete version:

It can be shown that a discrete version can be stated as:
Yek = (1 — @)ypr—1 + ayy

Where
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Ts
a=
T+ T,

Where T is the Sampling Time.
Itis a golden rule that T; << Ty and in practice we should use the following rule:
T,
f
T, < =
Example:

We will implement the discrete low-pass filter algorithm below using a Formula Node in
LabVIEW:

Vek = (1 — a)ys -1 + ayy

Where

The Block Diagram becomes:

a=Ts/(TF+Ts);

if (init==1)

{Out_k=In_k;}
FeTs else
| DBL ¥ {

Out_k=(1-a)*Out_k1+a*In_k;
- )
Filter Input T —

DBL K
p— PDBL |

The Front Panel:

Tutorial: Control and Simulation in LabVIEW
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P Lowpass Filter.vi Front Panel

File Edit View Project Operate Tools Window Help ﬁ
q>|@| @]‘E | 13pt Dialog Font - ||;W| '.T]:v”ﬁv'..q “? h—
A~
Filter Input Filter Output
7
820 20
TF [s]
gs
Ts [s]
7
5) 0,1
A/
< >

It is a good idea to build this as a SubVls, and then we can easily reuse the Low-pass filter in
all our applications.

We will test the discrete low-pass filter, to make sure it works as expected:

We create a simple test application where we add some random white noise to a sine signal.
We will plot the unfiltered and the filtered signal to see if the low-pass filter is able to
remove the noise from the sine signal.

P! Test of Filter.vi Block Diagram

File Edit Yiew Project Operate Tools Window Help 3
[ l@l |_©|,E Ilnllalair I 13pt Application Font |+ ” :;v”'-_n:v| I&v'@ Q4 I =
~
N
Sine Pattern.vil POy e ——
= L WaveForm Graph
B ,—P/\ L P 52 »o5L]
Uniform White Noise PtByPE. vil ;I
s I L Filt |
TFTs | |Lowpass Filter. vi
B
frs[s
[DBL#Y
m V T
v
< 2

We get the following results:
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® Test of Filter.vi Front Panel

File Edit Yiew Project Operate Tools Window Help
¢|@| nj@ | 13pt Dialog Font 2 B R I EEN E
-~

Waveform Graph Plot 0 |
TF [s]
7
+0,5
») % 1}5_
Ts [s]
o, 3o
%
£
< -0,5-
il =
25 1 1 1 1 [ 1 1
0 20 40 60 80 100 120 140
Time
v
< >

We see that the filter works fine. The red line is the unfiltered sine signal with white noise,
while the red line is the filtered results.

[End of Example]

10.2 Pl Controller

A Pl controller may be written:

K t
u(t) = ug + Kye(t) + Tpf edrt
0

i

Where u is the controller output and e is the control error:

e(t) =r(t) —y()

Laplace version:

u(s) = Kye(s) + %e(s)

Discrete version:

We start with:

Tutorial: Control and Simulation in LabVIEW
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K t
u(t) = ug + Kpe(t) + ?pf edt
]

L

In order to make a discrete version using, e.g., Euler, we can derive both sides of the
equation:

U= + Kpé + e
L

If we use Euler Forward we get:

U —Ug-1  Upk — Uok-1 ex —er1  Kp
= + Kp — €k

Ts Ts Ts T;

Then we get:
Ky

Uy = Up—1 + Uox — Uog-1 + Kpley —ep1) + - Tsey
l
Where

€ =Tk — Yk
We can also split the equation above in 2 different pars by setting:
Auk = uk - uk_1

This gives the following Pl control algorithm:

€ =Tk — Yk

K
P
Awy = Up — Up k-1 + Kp(ex — ex-1) + = Tsey
12

U = Uk—1 + Auk

This algorithm can easily be implemented in LabVIEW or other languages such as, e.g., C# or
MATLAB.

For more details about how to implement this in C#, see the Tutorial “Data Acquisition in
C#”, available from https://www.halvorsen.blog.

LabVIEW Example:

Below we have implemented the discrete Pl controller using a Formula Node in LabVIEW:

Tutorial: Control and Simulation in LabVIEW
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! Pl Controller.vi Block Diagram

File Edit View Project Operate Tools Window Help .
(>[@] ©[n][@][25] [wal@] o [ 130t Appication Fort [~ [3a+][{-R [2 ‘Contn
A

Formula Node

float ek;
float duk;

ek =r-y;
duk = (uDk-u0k1) + Kp*(ek-ek1) + (Kp*Ts*ek)/Ti;
uk = ukl+duk;
u0k1=u0k;

if (uk=100)
uk=100;

“ue |<

|~
[a

The Pl controller is implemented as a SubVI, so it is easy to reuse the algorithm in all our
applications.

We test our discrete Pl controller with the following application:

Tutorial: Control and Simulation in LabVIEW
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P Discrete Pl Simulator Example.vi Front Panel

> [®] @[E“ 13pt Dialog Font '~ [3a][Ta~ 2] [€5-] N Q2]

Process Yariable [~ 60,04
Setpoint |+™* 60,78

File Edit View Project Operate Tools Window Help
[zl
~

PY¥ Setpoint Output
PY: b0,0367 SR Output | I'L 15,99
SP: [60,7543 100,0-
100- 80,0-
BD— 60,0_:IIIII-IIIIIIIIIIIIIII..l.ll-l-l.- " ARAEE
40,0=
60— 3
20,0
40 - 0,0_:
20- -20,0-
-40,07
0- 3
-60,0]
My: :
| 0
i i | -100,0 - |
-00 0 100 129 195

process Parameters

PID gains
o staticgain 2,50 ¥ | deadband |20
i i 20,000 &
Proportional gain (Kc) J v lag (min) 0 noise level % m

i i A TF [s]
Integral time (Ti, sec) |2,000 $ 9 = e initial PV L
A L}
load % (40,00 <
Sampling Time dt {s) |SOm = Stop

4
>

<

Block Diagram:

B Discrete Pl Simulator Example.vi Block Diagram [Dgl

File Edit Yiew Project Operate Tools Window Help late]
@,EI ba |7 [ 13et Application Font |~ ][8o+ ][4~ ] (€5 ][2a)] [+] < 2]
-~
Aprocess Parameters?lub initial PY |7
Tod %
dead cycles
no
initial
Bampling Timt 5 L
[T6Ly, ‘.
> E
i
< 2

[End of Example]

10.2.1 Pl Controller as a State-space model

Tutorial: Control and Simulation in LabVIEW
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1 .
We set Z=;e=>sz=e=>z=e

This gives:

Where

Discrete version:

Using Euler:

. Zpy1 — Zg
Py las Sl

Ts
Where T is the Sampling Time.
This gives:
Zry1 — Zg — e
T, 4§
N
U, = pek + T Zy
2

Finally:

€k =Tk — Yk

Ky

Uy = erk + T.
l

Zy

Zyy1 =z + Tsey

This algorithm can easily be implemented in LabVIEW or other languages such as, e.g., C# or
MATLAB.

For more details about how to implement this in C#, see the Tutorial “Data Acquisition in
C#”, available from https://www.halvorsen.blog.

10.3 Process Model
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We will use a simple water tank to illustrate how to create a discrete version of a
mathematical process model. Below we see an illustration:

A very simple (linear) model of the water tank is as follows:
Ath' = Kpu_Fout

or

|
h = 7 [Kpu—Fouc]

Where:

h [cm]is the level in the water tank

u [V]is the pump control signal to the pump

e A; [cm2]is the cross-sectional area in the tank

e K, [(cm3/s)/V]is the pump gain

o F,,; [cm3/s]is the outflow through the valve (this outflow can be modeled more
accurately taking into account the valve characteristic expressing the relation
between pressure drop across the valve and the flow through the valve).

We can use the Euler Forward discretization method in order to create a discrete model:

i~ Xk+1 — Xk
T

Then we get:

Ry — Iy _ 1

Ts - A_t [Kpuk_Fout]

Tutorial: Control and Simulation in LabVIEW
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Finally:

T,
hk+1 = hk + A_ [Kpuk_Fout]
t

This model can easily be implemented in a computer using, e.g., MATLAB, LabVIEW or C#.
For more details for how to do this in C#, see the Tutorial “Data Acquisition in C#”.

In LabVIEW this can, e.g., be implemented in a Formula Node or MathScript Node.

Example:

In this example we will simulate a Bacteria Population.

In this example we will use LabVIEW and the LabVIEW Control Design and Simulation
Module to simulate a simple model of a bacteria population in a jar.

The model is as follows:
birth rate=bx
death rate = px?
Then the total rate of change of bacteria population is:
x = bx — px?
We set b=1/hour and p=0.5 bacteria-hour in our example.

We will simulate the number of bacteria in the jar after 1 hour, assuming that initially there
are 100 bacteria present.

We will simulate the system using a For Loop in LabVIEW and implement the discrete model
in a Formula Node.

Step 1: We start by creating the discrete model.

If we use Euler Forward differentiation method:

i~ Xk+1 — Xk
T

Where T is the Sampling Time.
We get:

Xk+1 — Xk

T, = bx; — px;,

Tutorial: Control and Simulation in LabVIEW
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This gives:

X1 = Xy + Ts(bxy — pxf)

Step 2: We implement the model in the Formula Node and create a Sub VI.

P! Discrete Model.vi Block Diagram

File Edit Yiew Project Operate Tools Window Help o

>[@| @[n] || [ 130t Dislog Font ||

float b;
| float p;
— b=1;
p=0.5;
xk=xk1+Ts*{b*xk1-p*xk1*xk1);

22

POEL

(<

<

| v

Step 3: We create the simulation program using a For Loop.

. Bacteria Simulation-For Loop.vi Block Diagram

File Edit View Project Operate Tools Window Help T
c{)l@l ©|’E| ba|fP| ¥ | 13pt Dialog Font - ”;’;‘" =
A~
Mumber of Iterations (N): Simulation Time/Sampling Time R
M= 1/0.01=100
N
°
Ts Dis. emelEH] EpeL]
m Model T =
[ o T
A
< >

We get the following results (note the Scaling Factors set in the Graph Properties):

Tutorial: Control and Simulation in LabVIEW
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File Edit Yiew Project Operate Tools Window Help

I.{) l@l @) ,EI I 13pt Application Font - ”;nvl
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Waveform Graph
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Time:
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v
> -OK -Cancel -He\p

[End of Example]

Example:

Given the following mathematical model (nonlinear):

56 == _Kl\/} + Kzu

We will create a new application in LabVIEW where we simulate this model using a Formula

Node to implement the discrete model.

We will use the Euler Forward method (because this is a nonlinear equation):

This gives:

Block Diagram:

. Xk+1 T Xk
T

X — X
% = _Kl\/;-l' Kzu
S

X = Xje—1 + Ts[=Kiy[x— + Kpues]

Tutorial: Control and Simulation in LabVIEW
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B! Task 3-4 Discretization.vi Block Diagram Q@@ B! Discrete Model.vi Block Diagram
File Edit View Project Operate Tools Window Help Flle Edit View Project Operate Tools Window Help
"{)l@l ”:”IE|“QIQ‘31T | 13pt Dialog Font I “.'IEI..“OQ"E":—V | 13pt Dialog Font - ”*Dv” ""°’°'
~
~
Number of Iterations (N): Simulation Time/Sampling Time: & I et K1,
N=10/0.1=100 DBLY EiyathZ,'
I K2=1;
N xk—xk1+Ts*( K1*sqrt(xki)+K2*uk1); g
Step I [ - ¥oBL]|
1
Dii. £ »OBL
|g,ﬂ Model
m 7
™ v
< > < >

Front Panel:

B Task 3-4 Discretization.vi Front Panel

File Edit VYiew Project Operate Tools Window Help

o> I@I uju@ | 13pt Application Font |« ” fov "Tﬁ:v “ﬁv | E

Waveform Graph

Amplitude

0,4-

[End of Example]
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