
https://www.halvorsen.blog	

https://www.halvorsen.blog/documents/programming/labview/	 	

	

	

	

	

	

Introduction	to	LabVIEW	
Hans-Petter	Halvorsen	

	

	

	

Introduction	to	LabVIEW	
	

Hans-Petter	Halvorsen	

Copyright	©	2017	
	

E-Mail:	hans.p.halvorsen@usn.no	 	

Web:	https://www.halvorsen.blog	 	

	

https://www.halvorsen.blog	

	

iii	

	

Preface	
This	document	explains	the	basic	concepts	of	LabVIEW.	

	

You	find	additional	resources,	code,	etc.	here:	

https://www.halvorsen.blog/documents/programming/labview/	 	

	

	

	

	

	

	

iv	

		

Table	of	Contents	
Preface	...	iii	

Table	of	Contents	...	iv	

1	 Introduction	..	1	

1.1	 Dataflow	Programming	...	1	

1.2	 Graphical	Programming	..	1	

1.3	 Benefits	...	2	

2	 Start	using	LabVIEW	..	4	

2.1	 The	LabVIEW	Environment	...	4	

2.2	 Front	Panel	...	5	

2.3	 Block	Diagram	...	7	

2.4	 Controls	Palette	..	10	

2.4.1	 Numeric	Sub	Palette	..	12	

2.4.2	 Boolean	Sub	Palette	..	12	

2.4.3	 String	&	Path	Sub	Palette	..	13	

2.5	 Function	Palette	..	13	

2.6	 Tools	Palette	...	14	

2.7	 Wiring	...	16	

2.8	 Toolbar	..	16	

2.9	 Execution	..	17	

2.10	 The	Objects	short-cut	menu	...	18	

2.11	 Dataflow	Programming	...	19	

2.12	 Help	...	20	

Exercises	..	20	

v	 	 Table	of	Contents	

Tutorial:	An	Introduction	to	LabVIEW	

3	 Sub	VIs	...	24	

3.1	 Create	New	Sub	VI	from	Scratch	...	25	

3.1.1	 Input	and	Output	SubVI	Connectors	...	26	

3.1.2	 Icon	Editor	...	28	

3.2	 Create	Sub	VI	from	existing	code	..	29	

3.3	 Using	Sub	VIs	..	30	

Exercises	..	31	

4	 Customize	LabVIEW	...	33	

Exercises	..	34	

5	 Loops	and	Structures	...	35	

5.1	 Loops	...	35	

5.1.1	 For	Loop	...	36	

5.1.2	 While	Loop	..	37	

5.2	 Structures	...	38	

5.2.1	 Case	Structure	...	38	

5.2.2	 Sequence	Structure	...	39	

5.2.3	 Event	Structure	..	40	

Exercises	..	42	

6	 Troubleshooting	and	Debugging	...	45	

6.1	 How	to	find	errors	..	45	

6.2	 Highlight	Execution	...	45	

6.3	 Probes	...	46	

6.4	 Breakpoints	...	47	

6.5	 Step	into/over/out	debugging	..	48	

Exercises	..	48	

vi	 	 Table	of	Contents	

Tutorial:	An	Introduction	to	LabVIEW	

7	 Working	with	Data	..	50	

7.1	 Arrays	..	50	

7.1.1	 Auto-Indexing	..	50	

7.1.2	 Array	Functions	...	51	

7.2	 Cluster	...	53	

7.2.1	 Cluster	Order	...	54	

7.2.2	 Cluster	Elements	..	55	

Exercises	..	56	

8	 Working	with	Strings	...	58	

Exercises	..	60	

9	 Error	Handling	...	62	

9.1	 Finding	Error	...	62	

9.2	 Error	Wiring	..	62	

9.3	 Error	Handling	in	SubVIs	...	63	

9.4	 Error	Handling	...	64	

Exercises	..	65	

10	 Working	with	Projects	..	66	

10.1	 Project	Explorer	...	66	

10.2	 Deployment	...	67	

Exercises	..	69	

11	 Design	Techniques	..	71	

11.1	 Force	Program	Flow	..	71	

11.2	 Shift	Register	...	72	

11.3	 State	Programming	Architecture	..	73	

11.4	 Multiple	Loops/Parallel	programming	..	75	

vii	 	 Table	of	Contents	

Tutorial:	An	Introduction	to	LabVIEW	

11.5	 Templates	..	77	

Exercises	..	78	

12	 User	Interface	...	80	

12.1	 VI	Properties	...	81	

Exercises	..	84	

13	 Plotting	Data	...	85	

13.1	 Customizing	...	87	

Exercises	..	89	

14	 Tips	&	Tricks	...	91	

14.1	 10	functions	you	need	to	know	about	..	91	

14.2	 The	10	most	useful	Short-cuts	..	96	

15	 Example	Application	...	97	

16	 Additional	Exercises	...	101	

17	 What’s	Next?	..	106	

17.1	 My	Blog	...	106	

17.2	 Tutorials	..	106	

17.3	 Additional	Resources	..	106	

17.4	 Examples	...	107	

Quick	Reference	..	108	

	

	

1	

		

1 Introduction	
LabVIEW	(short	for	Laboratory	Virtual	Instrumentation	Engineering	Workbench)	is	a	
platform	and	development	environment	for	a	visual	programming	language	from	National	
Instruments.	The	graphical	language	is	named	"G".	Originally	released	for	the	Apple	
Macintosh	in	1986,	LabVIEW	is	commonly	used	for	data	acquisition,	instrument	control,	and	
industrial	automation	on	a	variety	of	platforms	including	Microsoft	Windows,	various	flavors	
of	UNIX,	Linux,	and	Mac	OS	X.	The	latest	version	of	LabVIEW	is	version	LabVIEW	2011.	Visit	
National	Instruments	at	www.ni.com.	

The	code	files	have	the	extension	“.vi”,	which	is	an	abbreviation	for	“Virtual	Instrument”.	
LabVIEW	offers	lots	of	additional	Add-Ons	and	Toolkits.	

1.1 Dataflow	Programming	
The	programming	language	used	in	LabVIEW,	also	referred	to	as	G,	is	a	dataflow	
programming	language.	Execution	is	determined	by	the	structure	of	a	graphical	block	
diagram	(the	LV-source	code)	on	which	the	programmer	connects	different	function-nodes	
by	drawing	wires.	These	wires	propagate	variables	and	any	node	can	execute	as	soon	as	all	
its	input	data	become	available.	Since	this	might	be	the	case	for	multiple	nodes	
simultaneously,	G	is	inherently	capable	of	parallel	execution.	Multi-processing	and	multi-
threading	hardware	is	automatically	exploited	by	the	built-in	scheduler,	which	multiplexes	
multiple	OS	threads	over	the	nodes	ready	for	execution.	

1.2 	 Graphical	Programming	
LabVIEW	ties	the	creation	of	user	interfaces	(called	front	panels)	into	the	development	cycle.	
LabVIEW	programs/subroutines	are	called	virtual	instruments	(VIs).	Each	VI	has	three	
components:	a	block	diagram,	a	front	panel,	and	a	connector	panel.	The	last	is	used	to	
represent	the	VI	in	the	block	diagrams	of	other,	calling	VIs.	Controls	and	indicators	on	the	
front	panel	allow	an	operator	to	input	data	into	or	extract	data	from	a	running	virtual	
instrument.	However,	the	front	panel	can	also	serve	as	a	programmatic	interface.	Thus	a	
virtual	instrument	can	either	be	run	as	a	program,	with	the	front	panel	serving	as	a	user	
interface,	or,	when	dropped	as	a	node	onto	the	block	diagram,	the	front	panel	defines	the	
inputs	and	outputs	for	the	given	node	through	the	connector	pane.	This	implies	each	VI	can	
be	easily	tested	before	being	embedded	as	a	subroutine	into	a	larger	program.	

2	 	 Introduction	

Tutorial:	An	Introduction	to	LabVIEW	

The	graphical	approach	also	allows	non-programmers	to	build	programs	simply	by	dragging	
and	dropping	virtual	representations	of	lab	equipment	with	which	they	are	already	familiar.	
The	LabVIEW	programming	environment,	with	the	included	examples	and	the	
documentation,	makes	it	simple	to	create	small	applications.	This	is	a	benefit	on	one	side,	
but	there	is	also	a	certain	danger	of	underestimating	the	expertise	needed	for	good	quality	
"G"	programming.	For	complex	algorithms	or	large-scale	code,	it	is	important	that	the	
programmer	possess	an	extensive	knowledge	of	the	special	LabVIEW	syntax	and	the	
topology	of	its	memory	management.	The	most	advanced	LabVIEW	development	systems	
offer	the	possibility	of	building	stand-alone	applications.	Furthermore,	it	is	possible	to	create	
distributed	applications,	which	communicate	by	a	client/server	scheme,	and	are	therefore	
easier	to	implement	due	to	the	inherently	parallel	nature	of	G-code.	

1.3 Benefits	
One	benefit	of	LabVIEW	over	other	development	environments	is	the	extensive	support	for	
accessing	instrumentation	hardware.	Drivers	and	abstraction	layers	for	many	different	types	
of	instruments	and	buses	are	included	or	are	available	for	inclusion.	These	present	
themselves	as	graphical	nodes.	The	abstraction	layers	offer	standard	software	interfaces	to	
communicate	with	hardware	devices.	The	provided	driver	interfaces	save	program	
development	time.	The	sales	pitch	of	National	Instruments	is,	therefore,	that	even	people	
with	limited	coding	experience	can	write	programs	and	deploy	test	solutions	in	a	reduced	
time	frame	when	compared	to	more	conventional	or	competing	systems.	A	new	hardware	
driver	topology	(DAQmxBase),	which	consists	mainly	of	G-coded	components	with	only	a	
few	register	calls	through	NI	Measurement	Hardware	DDK	(Driver	Development	Kit)	
functions,	provides	platform	independent	hardware	access	to	numerous	data	acquisition	
and	instrumentation	devices.	The	DAQmxBase	driver	is	available	for	LabVIEW	on	Windows,	
Mac	OS	X	and	Linux	platforms.	

This	document	introducing	the	following	themes:	

• Start	using	LabVIEW	
o The	LabVIEW	Environment	
o Front	Panel	and	Block	Diagram	
o Palettes:	Control	Palette,	Functions	Palette,	Tools	Palette	
o Data	Types	
o Property	Nodes	

• Sub	VIs	
• Loops	and	Structures	
• Troubleshooting	and	Debugging	
• Working	with	Data	

3	 	 Introduction	

Tutorial:	An	Introduction	to	LabVIEW	

o Arrays	
§ Array	Functions	

o Cluster	
• Working	with	Strings	
• Error	Handling	
• Working	with	Projects	using	Project	Explorer	
• Design	Techniques	

o Shift	Register	
o State	Machine	
o Multiple	Loops	

• User	Interface	
• Plotting	Data	
• Deployment:	Building	Executable	Applications	(.exe)	
• Introduction	to	Add-Ons	and	Toolkits	

o Briefly	explanations…	
o More	detail	about	Control	and	Simulation	Module	in	later	

• Introduction	to	DAQ	-	Data	Acquisition	
o MAX	–	Measurement	and	Automation	Explorer	
o NI-DAQmx	

• Quick	Reference	with	Keyboard	Short-cuts	

	

	

For	more	information	about	LabVIEW,	visit	my	Blog:	 	

https://www.halvorsen.blog	 	

	

4	

		

2 Start	using	LabVIEW	
This	chapter	explains	the	basic	concepts	in	LabVIEW.	

The	topics	are	as	follows:	

• The	LabVIEW	Environment	
• Front	Panel	and	Block	Diagram	
• Palettes:	Control	Palette,	Functions	Palette,	Tools	Palette	
• Data	Types	
• Property	Nodes	

2.1 The	LabVIEW	Environment	
LabVIEW	programs	are	called	Virtual	Instruments,	or	VIs,	because	their	appearance	and	
operation	imitate	physical	instruments,	such	as	oscilloscopes	and	multimeters.	LabVIEW	
contains	a	comprehensive	set	of	tools	for	acquiring	analyzing,	displaying,	and	storing	data,	as	
well	as	tools	to	help	you	troubleshoot	your	code.	

When	opening	LabVIEW,	you	first	come	to	the	“Getting	Started”	window.	

	

5	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

In	order	to	create	a	new	VI,	select	“Blank	VI”	or	in	order	to	create	a	new	LabVIEW	project,	
select	“Empty	project”.	

When	you	open	a	blank	VI,	an	untitled	front	panel	window	appears.	This	window	displays	
the	front	panel	and	is	one	of	the	two	LabVIEW	windows	you	use	to	build	a	VI.	The	other	
window	contains	the	block	diagram.	The	sections	below	describe	the	front	panel	and	the	
block	diagram.	

2.2 Front	Panel	
When	you	have	created	a	new	VI	or	selected	an	existing	VI,	the	Front	Panel	and	the	Block	
Diagram	for	that	specific	VI	will	appear.	

	

In	LabVIEW,	you	build	a	user	interface,	or	front	panel,	with	controls	and	indicators.	Controls	
are	knobs,	push	buttons,	dials,	and	other	input	devices.	Indicators	are	graphs,	LEDs,	and	
other	displays.	

You	build	the	front	panel	with	controls	and	indicators,	which	are	the	interactive	input	and	
output	terminals	of	the	VI,	respectively.	Controls	are	knobs,	push	buttons,	dials,	and	other	
input	devices.	Indicators	are	graphs,	LEDs,	and	other	displays.	Controls	simulate	instrument	

6	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

input	devices	and	supply	data	to	the	block	diagram	of	the	VI.	Indicators	simulate	instrument	
output	devices	and	display	data	the	block	diagram	acquires	or	generates.	

E.g.,	a	“Numeric”	can	either	be	a	“Numeric	Control”	or	a	“Numeric	Indicator”,	as	seen	below.	

	

I	you	select	a	“Numeric	Control”,	it	can	easy	be	changed	to	an	“Numeric	Indicator”	by	right	
click	on	the	object	an	select	“Change	to	Indicator”	

	

Or	opposite,	I	you	select	a	“Numeric	Indicator”,	it	can	easy	be	changed	to	an	“Numeric	
Control”	by	right	click	on	the	object	an	select	“Change	to	Control”	

7	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

The	difference	between	a	“Numeric	Control”	and	a	“Numeric	Indicator”	is	that	for	a	
“Numeric	Control”	you	may	enter	a	value,	while	the	“Numeric	Indicator”	is	read-only,	i.e.,	
you	may	only	read	the	value,	not	change	it.	

	

The	appearance	is	also	slightly	different,	the	“Numeric	Control”	has	an	increment	and	an	
decrement	button	in	front,	while	the	“Numeric	Indicator”	has	a	darker	background	color	in	
order	to	indicate	that	its	read-only.	

2.3 Block	Diagram	
After	you	build	the	user	interface,	you	add	code	using	VIs	and	structures	to	control	the	front	
panel	objects.	The	block	diagram	contains	this	code.	In	some	ways,	the	block	diagram	
resembles	a	flowchart.	

8	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

After	you	build	the	front	panel,	you	add	code	using	graphical	representations	of	functions	to	
control	the	front	panel	objects.	The	block	diagram	contains	this	graphical	source	code.	Front	
panel	objects	appear	as	terminals,	on	the	block	diagram.	Block	diagram	objects	include	
terminals,	SubVIs,	functions,	constants,	structures,	and	wires,	which	transfer	data	among	
other	block	diagram	objects.	

The	Figure	below	shows	a	front	panel	and	its	corresponding	block	diagram	with	front	panel	
and	block	diagram	components.	

9	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

The	different	components	are	as	follows:	

1. Toolbar	
2. Owned	Label	
3. Numeric	Control	
4. Free	Label	
5. Numeric	Control	Terminal	
6. Knob	Terminal	
7. Numeric	Constant	
8. Multiply	Function	
9. Icon	
10. Knob	Control	
11. Plot	Legend	 	
12. XY	Graph	

10	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

13. Wire	Data	Path	
14. XY	Graph	Terminal	
15. Bundle	Function	
16. SubVI	
17. For	Loop	Structure	

2.4 Controls	Palette	
The	Controls	and	Functions	palettes	contain	sub	palettes	of	objects	you	can	use	to	create	a	
VI.	When	you	click	a	sub	palette	icon,	the	entire	palette	changes	to	the	sub	palette	you	
selected.	To	use	an	object	on	the	palettes,	click	the	object	and	place	it	on	the	front	panel	or	
block	diagram.	The	Controls	palette	is	available	only	on	the	front	panel.	The	Controls	palette	
contains	the	controls	and	indicators	you	use	to	build	the	front	panel.	

	

The	most	used	Sub	Palettes	are	the	Numeric	Sub	Palette,	the	Boolean	Sub	Palette	and	the	
String	&	Path	Sub	Palette.	

You	may	change	the	appearance	and	the	contents	of	the	Controls	palette:	

11	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

You	may	Pin	the	palette,	so	it	is	always	visible,	just	click	the	little	pin	button	 	 in	the	
upper	left	corner	of	the	palette:	

	

If	you	want	to	change	the	content	and	appearance	of	the	palette,	click	the	“View”	button.	

	

Here	you	may	change	the	way	the	palette	should	look.	 	

	

If	you	click	“Change	Visible	Categories…”	you	may	change	which	Categories	you	want	to	have	
visible.	

	

12	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

2.4.1 Numeric	Sub	Palette	

“Numerical	Control”	and	“Numerical	Indicator”	are	the	most	used	objects	in	the	numeric	sub	
palette.	

	

2.4.2 Boolean	Sub	Palette	

This	palette	has	lots	of	different	buttons	you	may	use.	OK,	Cancel	and	Stop	buttons	are	
useful.	

13	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

2.4.3 String	&	Path	Sub	Palette	

In	the	String	and	Path	palette	we	have	String	Controls,	Combo	Box,	etc.	

	

2.5 Function	Palette	
The	Functions	palette	is	available	only	on	the	block	diagram.	The	Functions	palette	contains	
the	VIs	and	functions	you	use	to	build	the	block	diagram.	

14	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

2.6 Tools	Palette	
You	can	create,	modify,	and	debug	VIs	using	the	tools	located	on	the	floating	Tools	palette.	
The	Tools	palette	is	available	on	both	the	front	panel	and	the	block	diagram.	A	tool	is	a	
special	operating	mode	of	the	mouse	cursor.	The	cursor	corresponds	to	the	icon	of	the	tool	
selected	in	the	Tools	palette.	Use	the	tools	to	operate	and	modify	front	panel	and	block	
diagram	objects.	

15	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

The	Tools	palette	is	available	from	the	View	menu:	

	

If	you	make	sure	“Automatic	wiring”	is	disabled	(I	recommend	you	do	so!)	you	may	use	
the	Tab	key	on	your	keyboard	in	order	to	switch	between	the	most	common	tools.	

The	most	used	tools	are:	

	 Use	the	Operating	tool,	shown	at	left,	to	change	the	values	of	a	control	or	select	
the	text	within	a	control.	The	Operating	tool	changes	to	the	icon	shown	at	left	when	it	
moves	over	a	text	control,	such	as	a	numeric	or	string	control.	

	 Use	the	Positioning	tool,	shown	at	left,	to	select,	move,	or	resize	objects.	The	
Positioning	tool	changes	to	resizing	handles	when	it	moves	over	the	edge	of	a	resizable	
object.	

	 Use	the	Labeling	tool,	shown	at	left,	to	edit	text	and	create	free	labels.	The	

Labeling	tool	changes	to	the	following	icon	 	 when	you	create	free	labels.	

	 Use	the	Wiring	tool,	shown	at	left,	to	wire	objects	together	on	the	block	diagram.	

	

16	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

2.7 Wiring	
In	order	to	create	the	logical	flow	between	the	object	on	the	Block	Diagram,	you	need	to	use	
the	Wiring	tool	in	order	to	connect	the	different	objects	together.	

	 Use	the	Wiring	tool	to	wire	objects	together	on	the	block	diagram.	

Available	Keyboard	Shortcuts	when	dealing	with	Wiring:	

	

	 Ctrl-B	is	very	useful.	This	short-cut	removes	all	broken	wires	on	the	Block	Diagram.	

2.8 Toolbar	
Below	we	see	the	LabVIEW	Toolbar:	

	

The	behaviors	of	the	different	buttons	are	as	follows:	

17	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

	 Click	the	Run	button	to	run	a	VI.	LabVIEW	compiles	the	VI,	if	necessary.	You	can	run	a	VI	
if	the	Run	button	appears	as	a	solid	white	arrow.	The	solid	white	arrow,	shown	above,	also	
indicates	you	can	use	the	VI	as	a	subVI	if	you	create	a	connector	pane	for	the	VI.	

	 While	the	VI	runs,	the	Run	button	appears	as	shown	at	left	if	the	VI	is	a	top-level	VI,	
meaning	it	has	no	callers	and	therefore	is	not	a	subVI.	

	 If	the	VI	that	is	running	is	a	subVI,	the	Run	button	appears	as	shown	at	left.	

	 The	Run	button	appears	broken,	shown	at	left,	when	the	VI	you	are	creating	or	editing	
contains	errors.	If	the	Run	button	still	appears	broken	after	you	finish	wiring	the	block	
diagram,	the	VI	is	broken	and	cannot	run.	Click	this	button	to	display	the	Error	list	window,	
which	lists	all	errors	and	warnings.	

	 Click	the	Run	Continuously	button,	shown	at	left,	to	run	the	VI	until	you	abort	or	pause	
execution.	You	also	can	click	the	button	again	to	disable	continuous	running.	

	 While	the	VI	runs,	the	Abort	Execution	button,	shown	at	left,	appears.	Click	this	button	
to	stop	the	VI	immediately	if	there	is	no	other	way	to	stop	the	VI.	If	more	than	one	running	
top-level	VI	uses	the	VI,	the	button	is	dimmed.	 	

Note:	Avoid	using	the	Abort	Execution	button	to	stop	a	VI.	Either	let	the	VI	complete	its	data	
ow	or	design	a	method	to	stop	the	VI	programmatically.	By	doing	so,	the	VI	is	at	a	known	
state.	For	example,	place	a	button	on	the	front	panel	that	stops	the	VI	when	you	click	it.	

	 Click	the	Pause	button,	shown	at	left,	to	pause	a	running	VI.	When	you	click	the	Pause	
button,	LabVIEW	highlights	on	the	block	diagram	the	location	where	you	paused	execution,	
and	the	Pause	button	appears	red.	Click	the	button	again	to	continue	running	the	VI.	

2.9 Execution	
In	addition	to	the	Toolbar	buttons	above	the	following	Keyboard	Shortcuts	are	available	
when	dealing	with	Execution:	

	

18	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

2.10 The	Objects	short-cut	menu	
The	most	often-used	menu	is	the	object	shortcut	menu.	All	LabVIEW	objects	and	empty	
space	on	the	front	panel	and	block	diagram	have	associated	shortcut	menus.	Use	the	
shortcut	menu	items	to	change	the	look	or	behavior	of	front	panel	and	block	diagram	
objects.	To	access	the	shortcut	menu,	right-click	the	object,	front	panel,	or	block	diagram.	

The	Numeric	control	has	the	following	short-cut/right-click	menu:	

	

The	short-cut	menu	will	be	different	for	the	different	controls	or	objects.	

19	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

2.11 Dataflow	Programming	
LabVIEW	follows	a	dataflow	model	for	running	VIs.	A	block	diagram	node	executes	when	all	
its	inputs	are	available.	When	a	node	completes	execution,	it	supplies	data	to	its	output	
terminals	and	passes	the	output	data	to	the	next	node	in	the	dataflow	path.	

Visual	Basic,	C++/C#,	Java,	and	most	other	text-based	programming	languages	follow	a	
control	flow	model	of	program	execution.	In	control	flow,	the	sequential	order	of	program	
elements	determines	the	execution	order	of	a	program.	

	

Example:	Dataflow	Programming	

	

	

The	Example	shows	a	block	diagram	that	adds	two	numbers	and	then	subtracts	50.00	from	
the	result	of	the	addition.	In	this	case,	the	block	diagram	executes	from	left	to	right,	not	
because	the	objects	are	placed	in	that	order,	but	because	the	Subtract	function	cannot	
execute	until	the	Add	function	finishes	executing	and	passes	the	data	to	the	Subtract	
function.	Remember	that	a	node	executes	only	when	data	are	available	at	all	of	its	input	
terminals,	and	it	supplies	data	to	its	output	terminals	only	when	it	finishes	execution.	

Example:	Dataflow	Programming	

	

In	this	example,	consider	which	code	segment	would	execute	first-the	Add,	Random	
Number,	or	Divide	function.	You	cannot	know	because	inputs	to	the	Add	and	Divide	
functions	are	available	at	the	same	time,	and	the	Random	Number	function	has	no	inputs.	In	
a	situation	where	one	code	segment	must	execute	before	another	and	no	data	dependency	

20	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

exists	between	the	functions,	use	other	programming	methods,	such	as	error	clusters,	to	
force	the	order	of	execution.	

2.12 Help	

The	Context	Help	window	(Ctrl	+H)	displays	basic	information	about	LabVIEW	objects	
when	you	move	the	cursor	over	each	object.	The	Context	Help	window	is	visible	by	default.	
To	toggle	display	of	the	Context	Help	window,	select	Help-Show	Context	Help,	press	the	Ctrl-
H	keys,	or	click	the	Show	Context	Help	Window	button	on	the	toolbar.	

When	you	move	the	cursor	over	front	panel	and	block	diagram	objects,	the	Context	Help	
window	displays	the	icon	for	subVIs,	functions,	constants,	controls,	and	indicators,	with	
wires	attached	to	each	terminal.	When	you	move	the	cursor	over	dialog	box	options,	the	
Context	Help	window	displays	descriptions	of	those	options.	In	the	window,	required	
connections	are	bold,	recommended	connections	are	plain	text,	and	optional	connections	
are	dimmed	or	do	not	appear.	The	Figure	below	shows	an	example	of	the	Context	Help	
window.	

	

Exercises	
Exercise:	Create	your	first	LabVIEW	application	(VI)	

Create	a	simple	LabVIEW	application	(VI)	with	a	Front	Panel	with	some	Controls	and	
Indicators.	Create	the	logic	by	connecting	the	Terminals	on	the	Block	Diagram	

The	Front	Panel	could	look	something	like	this:	

21	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

The	Block	Diagram	could	look	something	like	this:	

	

	 Start	the	program	with	the	Run	button.	 	

	

Exercise:	Create	a	simple	Calculator	

Create	a	simple	calculator	that	Add	and	Subtract	2	numbers	like	this:	

22	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

	 Start	the	program	with	the	Run	button.	 	

	

Exercise:	Write	Data	to	File	

Create	a	VI	that	writes	data	to	a	Text	File.	

Use	Vis	or	functions	from	the	File	I/O	palette	

	

The	program	could	look	something	like	this:	

23	 	 Start	using	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

	

Exercise:	Read	Data	from	File	

Create	another	VI	that	read	the	text	file	you	created	in	the	previous	VI.

	

24	

		

3 Sub	VIs	
This	chapter	explains	the	basic	concepts	of	creating	and	using	Sub	VIs	in	LabVIEW.	

Topics:	

• Create	New	Sub	VI	from	Scratch	
• Create	Sub	VI	from	existing	code	
• Using	Sub	VIs	

When	you	place	a	VI	on	the	block	diagram,	LabVIEW	considers	the	VI	to	be	a	subVI.	When	
you	double-click	a	subVI,	its	front	panel	and	block	diagram	appear,	rather	than	a	dialog	box	
in	which	you	can	configure	options.	The	front	panel	includes	controls	and	indicators.	The	
block	diagram	includes	wires,	front	panel	icons,	functions,	possibly	subVIs,	and	other	
LabVIEW	objects.	The	upper	right	corner	of	the	front	panel	and	block	diagram	displays.	

Below	we	see	an	example	of	a	bad	Block	Diagram.	This	example	does	not	make	use	of	the	
SubVI	functionality	in	LabVIEW	at	all!	This	makes	the	Block	diagram	hard	to	read	and	
understand.	The	size	of	the	diagram	is	also	too	large!	The	Block	Diagram	should	always	fit	
into	the	screen.	Both	the	Front	Panel	and	the	Block	Diagram	should	fit	into	a	screen	
resolution	of	1024x768.	

	

25	 	 Sub	VIs	 	

Tutorial:	An	Introduction	to	LabVIEW	

With	use	of	SubVIs,	the	example	above	could	turn	into,	e.g.:	

	

As	you	can	see,	much	of	the	code	in	the	Main	VI	have	been	replaced	and	put	into	SubVIs.	
The	program	is	now	more	readable.	

Another	approach	is	to	use	a	so-called	State	Machine	principle	(more	about	this	in	chapter	
11	-	Design	Techniques).	

	

Available	Keyboard	Shortcuts	when	dealing	with	Sub	Vis:	

	

3.1 Create	New	Sub	VI	from	Scratch	

26	 	 Sub	VIs	 	

Tutorial:	An	Introduction	to	LabVIEW	

Select	“Blank	VI”	in	the	“Getting	Started”	window	when	opening	LabVIEW,	or	when	LabVIEW	
is	already	opened	select	File	→	New	V”	or	use	the	short-cut	Ctrl+N.	

3.1.1 Input	and	Output	SubVI	Connectors	

Most	SubVIs	will	have	input	and	output	“connectors”.	This	is	similar	with	functions	or	
methods	in	other	programming	language	that	have	input	arguments	and	an	output/result.	

In	order	to	create	connectors,	Right-click	on	the	icon	in	the	upper	right	corner	of	the	VI	and	
select	“Show	Connector”.	

	

	

You	may	select	different	Patterns,	i.e.,	how	many	input	and	output	connectors	you	need.	

27	 	 Sub	VIs	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Make	sure	you	select	a	Pattern	with	enough	connectors	even	if	you	don’t	need	all	the	
connectors	at	the	moment.	I	recommend	that	you	standardize	on	the	pattern	in	the	Figure	
above.	

	 Select	the	Wire	tool	and	click	on	the	wanted	connector,	then	click	on	the	Control	or	
Indicator	on	the	Front	Panel	you	want	to	connect	to	this	connector.	

	

You	should	always	follow	these	connector	rules:	

• Upper	left	connector:	“Reference”	In	
• Upper	right	connector:	“Reference”	Out	
• Lower	left	connector:	Error	In	Cluster	
• Lower	right	connector:	Error	Out	Cluster	

Example:	SubVI	Connectors	

See	example	below	about	these	connector	rules:	

28	 	 Sub	VIs	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Most	common	VIs	that	exits	follow	these	rules,	see	example	below.	

	

If	you	follow	these	connector	rules	it’s	much	easier	to	create	a	clean	and	neat	code	like	this:	

	

By	doing	this	it’s	also	clear	how	the	Data	flows	in	the	program.	It	should	always	flow	from	
left	to	right.	

3.1.2 Icon	Editor	

You	should	also	create	a	suitable	icon	for	your	SubVI.	

In	order	to	open	the	Icon	Editor,	double-click	on	the	icon	in	the	upper	right	corner	of	your	VI.	

29	 	 Sub	VIs	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

Below	we	see	a	block	diagram	with	SubVIs	icon	appearance	created	with	the	Icon	Editor.	

	

3.2 Create	Sub	VI	from	existing	code	
If	you	find	out	that	you	code	is	getting	messy,	you	could	consider	put	some	code	into	a	
SubVI.	

The	procedure	is	as	follows:	

1. Select	the	part	of	your	code	you	want	to	turn	into	a	SubVI	
2. From	the	Edit	menu,	select	“Create	SubVI”	

30	 	 Sub	VIs	 	

Tutorial:	An	Introduction	to	LabVIEW	

3. LabVIEW	will	automatically	create	a	SubVI	for	the	selected	code.	
4. Clean	up	automatically	created	wires,	etc.	
5. Create	a	suitable	icon	for	your	SubVI	

	

Although	this	is	quite	easy	to	do	this,	I	do	not	recommend	that	you	use	this	functionality	to	
much.	This	is	because	you	should	create	and	use	SubVIs	from	the	first	moment	you	start	
creating	your	application	and	not	afterwards	when	you	find	out	that	you	have	been	creating	
a	messy	code.	

So	you	should	structure	and	design	your	code	with	the	use	of	SubVIs	from	the	beginning!	

3.3 Using	Sub	VIs	
Below	we	see	an	example	of	how	to	use	SubVIs	in	a	program	(Top	VI	or	SubVIs):	

	

You	may	open	a	SubVI	from	the	File	menu,	select	a	SubVI	from	the	Functions	palette	or	use	
drag	and	drop	in	different	ways,	e.g.,	you	may	drag	a	VI	from	the	File	Explorer	in	Windows	
directly	into	an	existing	VI	you	have	already	opened	in	LabVIEW	

31	 	 Sub	VIs	 	

Tutorial:	An	Introduction	to	LabVIEW	

Exercises	
Exercise:	Convert	C	to	F	VI	

Create	a	SubVI	that	convert	a	Temperature	in	Celsius	to	a	Temperature	in	Fahrenheit	

	

1. Create	the	SubVI	
2. Create	the	Front	Panel	and	the	Block	Diagram	as	shown	above	
3. Create	necessary	Connectors	
4. Create	a	suitable	icon,	e.g.:	

	

5. Use	the	SubVI	in	another	VI	
6. Run	the	program	to	see	if	it	works	
7. Expand	the	program	so	you	can	select	if	you	want	to	convert	from	Celsius	to	

Fahrenheit	or	from	Fahrenheit	to	Celsius	

	

	

Exercise:	Convert	existing	code	into	a	SubVI	

32	 	 Sub	VIs	 	

Tutorial:	An	Introduction	to	LabVIEW	

Convert	a	part	of	your	application	into	a	SubVI	by	using	the	Create	SubVI	function	in	
LabVIEW.	

	

	

	

	

33	

		

4 Customize	LabVIEW	
LabVIEW	has	lots	of	possibilities	for	customizing	the	appearance	and	the	use	of	the	LabVIEW	
environment.	Select	“Options…”	from	the	Tools	menu.	

	

The	default	settings	is	not	necessary	the	best,	here	are	some	recommendations	for	setting	
up	the	LabVIEW	environment.	

Category:	Block	Diagram	

34	 	 Customize	LabVIEW	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

• Disable	“Enable	auto	wiring”	option.	This	prevents	LabVIEW	from	automatically	
connecting	adjacent	blocks.	Although	it	seems	useful	to	have	auto	wiring	enables,	it	
is	my	experience	that	the	auto	wiring	is	a	little	annoying	since	it	tends	to	draw	wires	
between	blocks	when	you	do	not	want	any	wire.	

• Disable	“Place	front	panel	elements	as	icons”	option.	This	causes	LabVIEW	to	use	
small	terminal	icons	on	the	block	diagram.	If	you,	instead,	activate	this	option,	the	
terminal	icons	are	larger,	with	a	mimic	of	the	element	as	it	appears	at	the	front	
panel.	 	

Category:	Controls/Functions	Palettes	

• In	the	Format	list:	 	 select	“Category	(Icons	and	Text)”	

Category:	Alignment	Grid	

• Turn	off	“Show	Front	Panel	Grid”	and	“Show	Block	Diagram	Grid”	

Exercises	
Exercise:	Customize	LabVIEW	

Try	the	different	settings	explained	in	this	chapter.	Turn	them	on	and	off	and	watch	the	
different.	

	

	

35	

		

5 Loops	and	Structures	
This	chapter	explains	the	basic	concepts	of	Loops	and	Structures	in	LabVIEW.	

The	topics	are	as	follows:	

• For	Loop	
• While	Loop	
• Case	Structure	
• Sequence	Structure	
• Event	Structure	

The	different	Loops	and	Structures	available	are	located	in	the	“Structures”	sub	palette	in	
the	Functions	palette	on	the	Block	Diagram.	

	

5.1 Loops	
The	most	important	loops	are:	

• For	Loop	
• While	Loop	

36	 	 Loops	and	Structures	 	

Tutorial:	An	Introduction	to	LabVIEW	

These	loops	will	be	explained	in	detail	below.	

5.1.1 For	Loop	

A	For	Loop	executes	a	sub	diagram	a	set	number	of	times.	The	Figure	below	shows	an	empty	
For	Loop	in	LabVIEW.	

	

A	For	loop	executes	its	sub	diagram	n	times,	where	n	is	the	value	wired	to	the	count	()	
terminal.	The	iteration	()	terminal	provides	the	current	loop	iteration	count,	which	ranges	
from	0	to	n-1.	

After	you	create	a	For	Loop,	you	can	use	shift	registers	to	pass	values	from	one	iteration	to	
the	next.	If	you	wire	an	array	to	a	For	Loop,	you	can	read	and	process	every	element	in	that	
array	by	enabling	auto-indexing.	You	also	can	enable	auto-indexing	by	configuring	a	For	
Loop	to	return	an	array	of	every	value	generated	by	the	loop.	

You	can	add	a	conditional	terminal	to	configure	a	For	Loop	to	stop	when	a	Boolean	
condition	or	an	error	occurs.	A	For	Loop	with	a	conditional	terminal	executes	until	the	
condition	occurs	or	until	all	iterations	complete,	whichever	happens	first.	To	add	a	
conditional	terminal	to	a	For	Loop,	right-click	the	For	Loop	border	and	select	Conditional	
Terminal	from	the	shortcut	menu.	You	must	wire	the	conditional	terminal	and	either	wire	
the	count	terminal	or	auto-index	an	input	array	for	the	loop	to	execute	and	for	the	VI	to	run.	

To	convert	a	For	Loop	to	a	While	Loop,	right-click	the	For	Loop	and	select	Replace	with	While	
Loop	from	the	shortcut	menu.	

Example:	For	Loop	

The	following	example	uses	a	For	Loop	in	order	to	create	an	array	with	10	elements	and	fill	it	
with	random	numbers.	

37	 	 Loops	and	Structures	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

5.1.2 While	Loop	

A	While	loop	repeats	the	sub	diagram	inside	it	until	the	conditional	terminal,	an	input	
terminal,	receives	a	particular	Boolean	value.	The	Boolean	value	depends	on	the	
continuation	behavior	of	the	While	Loop.	Right-click	the	conditional	terminal	and	select	Stop	
if	True	or	Continue	if	True	from	the	shortcut	menu.	You	also	can	wire	an	error	cluster	to	the	
conditional	terminal,	right-click	the	terminal,	and	select	Stop	on	Error	or	Continue	while	
Error	from	the	shortcut	menu.	The	While	Loop	always	executes	at	least	once.	

Below	we	see	an	empty	While	loop:	

	

After	you	create	a	While	Loop,	you	can	use	shift	registers	to	pass	values	from	one	iteration	
to	the	next.	If	you	wire	an	array	to	a	While	Loop,	you	can	read	and	process	every	element	in	
that	array	by	enabling	auto-indexing.	

In	order	to	convert	a	While	Loop	into	a	For	Loop,	right-click	the	While	Loop	and	select	
“Replace	with	For	Loop”	from	the	shortcut	menu.	To	convert	a	While	Loop	into	a	Timed	
Loop,	right-click	the	While	Loop	and	select	“Replace	with	Timed	Loop”	from	the	shortcut	
menu.	

Example:	While	Loop	

38	 	 Loops	and	Structures	 	

Tutorial:	An	Introduction	to	LabVIEW	

This	example	run	until	either	the	user	clicks	the	stop	button	or	number	of	iterations	is	
greater	than	10.	

	

5.2 Structures	

5.2.1 Case	Structure	

The	Case	Structure	has	one	or	more	sub	diagrams,	or	cases,	exactly	one	of	which	executes	
when	the	structure	executes.	The	value	wired	to	the	selector	terminal	determines	which	
case	to	execute	and	can	be	Boolean,	string,	integer,	or	enumerated	type.	You	may	right-click	
the	structure	border	to	add	or	delete	cases.	Use	the	Labeling	tool	to	enter	value(s)	in	the	
case	selector	label	and	configure	the	value(s)	handled	by	each	case.	

Below	we	see	an	empty	Case	structure:	

	

Below	we	see	an	example	of	a	Case	structure	with	2	cases,	a	“True”	case	and	a	“False”	case.	
Depending	of	the	Boolean	input	value,	the	Numeric1	and	Numeric2	is	either	Added	or	
Subtracted.	

39	 	 Loops	and	Structures	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

5.2.2 Sequence	Structure	

A	Sequence	structure	Consists	of	one	or	more	sub	diagrams,	or	frames,	that	execute	
sequentially.	Right-click	the	structure	border	to	add	and	delete	frames	or	to	create	sequence	
locals	to	pass	data	between	frames.	Use	the	Stacked	Sequence	structure	to	ensure	a	sub	
diagram	executes	before	or	after	another	sub	diagram.	

Below	we	see	an	empty	Sequence	structure.	

	

40	 	 Loops	and	Structures	 	

Tutorial:	An	Introduction	to	LabVIEW	

Below	we	see	an	example	where	we	use	“Sequence	Local”,	i.e.,	we	pass	a	value	from	one	

sequence	to	the	next 	

Note!	To	take	advantage	of	the	inherent	parallelism	in	LabVIEW,	avoid	overusing	Sequence	
structures.	Sequence	structures	guarantee	the	order	of	execution,	but	prohibit	parallel	
operations.	Another	negative	to	using	Sequence	structures	is	that	you	cannot	stop	the	
execution	part	way	through	the	sequence.	

5.2.3 Event	Structure	

An	Event	structure	has	one	or	more	sub	diagrams,	or	event	cases,	exactly	one	of	which	
executes	when	the	structure	executes.	The	Event	structure	waits	until	an	event	happens,	
then	executes	the	appropriate	case	to	handle	that	event.	Right-click	the	structure	border	to	
add	new	event	cases	and	configure	which	events	to	handle.	Wire	a	value	to	the	Timeout	
terminal	at	the	top	left	of	the	Event	structure	to	specify	the	number	of	milliseconds	the	
Event	structure	should	wait	for	an	event	to	occur.	The	default	is	–1,	indicating	never	to	time	
out.	

Below	we	see	an	example:	

41	 	 Loops	and	Structures	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

Right-click	on	the	border	in	order	to	Add/Edit	Event	Cases,	see	the	dialog	box	below.	

42	 	 Loops	and	Structures	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Exercises	
Exercise:	For	Loop	

Create	a	VI	with	a	For	Loop.	Create	the	logic	to	find	out	if	a	number	in	an	array	is	greater	
than	10.	See	Front	Panel	below:	

43	 	 Loops	and	Structures	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Exercise:	While	Loop	

Create	a	VI	with	a	While	Loop.	Create	the	logic	to	find	out	which	(the	first)	index	in	the	array	
that	have	a	number	greater	than	30.	See	Front	Panel	below:	

	

Exercise:	Case	Structure	

Create	a	VI	with	a	Case	Structure.	

Use	a	Case	structure	inside	a	For	Loop	to	write	the	text	“The	Number	is	greater	than	10”	if	
value	is	greater	than	10.	See	Front	Panel	below:	

	

44	 	 Loops	and	Structures	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

Exercise:	Sequence	Structure	

Create	a	VI	with	a	Sequence	Structure.	See	Front	Panel	below:	

	

	

Exercise:	Event	Structure	

Create	a	VI	with	an	Event	Structure.	See	Front	Panel	below:	

	

45	

		

6 Troubleshooting	and	
Debugging	

This	chapter	explains	the	basic	concepts	of	troubleshooting	and	debugging	in	LabVIEW.	

Topics:	

• How	to	find	errors	
• Highlight	Execution	
• Probes	
• Breakpoints	
• Step	into/over/out	debugging	

6.1 How	to	find	errors	
	 If	a	VI	does	not	run,	it	is	a	broken,	or	“nonexecutable”,	VI.	The	Run	button	often	

appears	broken,	shown	at	left,	when	you	create	or	edit	a	VI.	If	it	is	still	broken	when	you	
finish	wiring	the	block	diagram,	the	VI	is	broken	and	will	not	run.	Generally,	this	means	that	a	
required	input	is	not	wired,	or	a	wire	is	broken.	

Click	the	broken	Run	button	to	display	the	Error	list	window,	which	lists	all	the	errors.	
Double-click	an	error	description	to	display	the	relevant	block	diagram	or	front	panel	and	
highlight	the	object	that	contains	the	error.	

6.2 Highlight	Execution	
	 View	an	animation	of	the	execution	of	the	block	diagram	by	clicking	the	Highlight	

Execution	button.	Execution	highlighting	shows	the	flow	of	data	on	the	block	diagram	from	
one	node	to	another	using	bubbles	that	move	along	the	wires.	Note!	Execution	highlighting	
greatly	reduces	the	speed	at	which	the	VI	runs.	

46	 	 Troubleshooting	and	Debugging	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

6.3 Probes	
	 Use	the	Probe	tool	to	check	intermediate	values	on	a	wire	as	a	VI	runs.	 	

When	execution	pauses	at	a	node	because	of	single-stepping	or	a	breakpoint,	you	also	can	
probe	the	wire	that	just	executed	to	see	the	value	that	flowed	through	that	wire.	You	also	
can	create	a	custom	probe	to	specify	which	indicator	you	use	to	view	the	probed	data.	For	
example,	if	you	are	viewing	numeric	data,	you	can	choose	to	see	that	data	in	a	chart	within	
the	probe.	To	create	a	custom	probe,	right-click	a	wire	and	select	Custom	Probe-New	from	
the	shortcut	menu.	

	

47	 	 Troubleshooting	and	Debugging	 	

Tutorial:	An	Introduction	to	LabVIEW	

6.4 Breakpoints	

	

	 Use	the	Breakpoint	tool	to	place	a	breakpoint	on	a	VI,	node,	or	wire	on	the	block	
diagram	and	pause	execution	at	that	location.	When	you	set	a	breakpoint	on	a	wire,	
execution	pauses	after	data	pass	through	the	wire.	Place	a	breakpoint	on	the	block	diagram	
workspace	to	pause	execution	after	all	nodes	on	the	block	diagram	execute.	When	a	VI	
pauses	at	a	breakpoint,	LabVIEW	brings	the	block	diagram	to	the	front	and	uses	a	marquee	
to	highlight	the	node	or	wire	that	contains	the	breakpoint.	LabVIEW	highlights	breakpoints	
with	red	borders	for	nodes	and	block	diagrams	and	red	bullets	for	wires.	When	you	move	
the	cursor	over	an	existing	breakpoint,	the	black	area	of	the	Breakpoint	tool	cursor	appears	
white.	Use	the	Breakpoint	tool	to	click	an	existing	breakpoint	to	remove	it.	

You	may	also	right-click	on	the	wire	in	order	to	set	a	breakpoint	or	open	the	Breakpoint	
Manager.	

	

Breakpoint	Manager	is	a	tool	for	enable,	disable	and	delete	breakpoints.	

48	 	 Troubleshooting	and	Debugging	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

6.5 Step	into/over/out	debugging	
Available	Keyboard	Shortcuts	when	Debugging:	

	

Exercises	
Exercise:	Highlight	Execution	

Enable	“Highlight	Execution”	in	one	of	your	programs,	and	see	how	it	works.	

	

Exercise:	Probes	

Set	Several	Probes	around	in	your	application	and	watch	how	it	works.	Use	the	Probe	watch	
Window	and	check	out	the	functionality	this	tool	offers.	

Also	check	out	the	“Custom	Probe”	and	the	“Find	Probe”	functionality.	

49	 	 Troubleshooting	and	Debugging	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

Exercise:	Breakpoints	

Set	some	Breakpoint	around	in	your	code	and	check	out	how	it	works.	Use	the	Breakpoint	
Manager	tool.	

Example:	

	

	

Exercise:	Step	into/over/out	debugging	

Use	the	Step	into/over/out	functionality	together	with	your	Breakpoints	and	learn	how	you	
can	use	them	and	see	what	the	difference	between	them	is.	

	

50	

		

7 Working	with	Data	
This	chapter	explains	the	basic	concepts	of	creating	and	using	Sub	Vis	in	LabVIEW.	

Topics:	

• Arrays	
• Array	Functions	
• Cluster	

7.1 Arrays	
Arrays	are	very	powerful	to	use	in	LabVIEW.	In	all	your	applications	you	would	probably	use	
both	One-Dimensional	Arrays	and	Two-Dimensional	Arrays.	

7.1.1 Auto-Indexing	

LabVIEW	uses	a	powerful	mechanism	called	“Auto-indexing”.	

For	Example	you	may	use	a	For	loop	to	create	Array	data	like	this:	

	

Or	you	may	use	an	Array	like	this	in	order	to	automatically	specify	number	of	iterations:	

51	 	 Working	with	Data	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

7.1.2 Array	Functions	

LabVIEW	has	lots	of	built-in	functions	for	manipulating	arrays.	

	

The	most	useful	Array	functions	are:	

	 Array	Size	

	 Index	Array	

52	 	 Working	with	Data	 	

Tutorial:	An	Introduction	to	LabVIEW	

	 Delete	from	Array	

	 Search	1D	Array	

	 Initialize	Array	

	 Build	Array	

	 Array	Subset	

	 Array	Constant	

All	these	functions	are	basic	(but	very	useful)	array	functions	you	will	probably	be	using	in	all	
your	applications	and	VIs.	

	

	

Example:	Array	functions	

In	this	example	we	see	how	we	can	use	these	Array	functions	and	what	they	do.	

	

The	resulting	Front	Panel	is	as	follows:	

53	 	 Working	with	Data	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

7.2 Cluster	
Clusters	group	data	elements	of	mixed	types,	such	as	a	bundle	of	wires,	as	in	a	telephone	
cable,	where	each	wire	in	the	cable	represents	a	different	element	of	the	cluster.	A	cluster	is	
similar	to	a	record	or	a	struct	in	text-based	programming	languages.	Bundling	several	data	
elements	into	clusters	eliminates	wire	clutter	on	the	block	diagram	and	reduces	the	number	
of	connector	pane	terminals	that	subVIs	need.	The	connector	pane	has,	at	most,	28	
terminals.	If	a	front	panel	contains	more	than	28	controls	and	indicators	that	you	want	to	
use	programmatically,	group	some	of	them	into	a	cluster	and	assign	the	cluster	to	a	terminal	
on	the	connector	pane.	Like	an	array,	a	cluster	is	either	a	control	or	an	indicator.	A	cluster	
cannot	contain	a	mixture	of	controls	and	indicators.	

54	 	 Working	with	Data	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Although	cluster	and	array	elements	are	both	ordered,	you	must	unbundle	all	cluster	
elements	at	once	rather	than	index	one	element	at	a	time.	You	also	can	use	the	“Unbundle	
By	Name”	function	to	access	specific	cluster	elements.	

Example	of	a	Cluster	in	LabVIEW:	

	

7.2.1 Cluster	Order	

You	may	sort	the	different	elements	in	the	cluster	by	right-click	on	the	cluster	border	and	
select	“Reorder	Controls	in	Cluster…”	

55	 	 Working	with	Data	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

7.2.2 Cluster	Elements	

In	order	to	manipulate	and	work	with	cluster	LabVIEW	offers	lots	of	functions,	such	as	the	
“Bundle”	and	“Unbundle”	functions.	

	

In	order	to	write	to	a	cluster	from	the	code,	you	may	use	the	“Bundle”	function	or	the	
“Bundle	By	Name”	function.	See	example	below:	

Example:	Clusters	

56	 	 Working	with	Data	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

In	order	to	get	access	to	the	different	elements	in	the	cluster,	you	need	to	“Unbundle”	by	
using	the	“Unbundle”	function	or	the	“Unbundle	By	Name”.	See	example	below:	

	

Exercises	
Exercise:	Arrays	

Create	some	simple	VIs	where	you	use	these	array	functions	to	manipulate	array	data:	

	 Array	Size	

	 Index	Array	

	 Delete	from	Array	

	 Search	1D	Array	

	 Initialize	Array	

	 Build	Array	

	 Array	Subset	

Exercise:	Arrays	

Create	a	SubVI	that	find	the	“peaks”	in	the	input	array	regarding	to	an	input	peak	level.	

57	 	 Working	with	Data	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Exercise:	Clusters	

Create	a	Cluster	and	get	the	different	values	from	the	controls	in	the	Cluster.	See	Front	Panel	
below:	

	

	

	

58	

		

8 Working	with	Strings	
Working	and	manipulating	with	strings	is	an	important	part	in	LabVIEW	development.	

On	the	Front	panel	we	have	the	following	String	controls	and	indicators	available	from	the	
Control	palette:	

	

On	the	Block	Diagram	we	have	the	following	String	functions	available	from	the	Functions	
palette:	

	

Some	of	the	most	important	String	functions	are:	

Concatenate	Strings	

59	 	 Working	with	Strings	

Tutorial:	An	Introduction	to	LabVIEW	

	

This	function	concatenates	several	strings	into	on	string:	

	

Search	and	Replace	String	

	

Use	this	when	you	want	to	replace	or	remove	a	certain	text	in	a	string.	

	

	

Match	Pattern	

60	 	 Working	with	Strings	

Tutorial:	An	Introduction	to	LabVIEW	

	

This	is	the	most	useful	function	when	it	comes	to	string	manipulation.	

	

	

Format	Into	String	

	

Example:	

	

Exercises	
Here	are	some	exercises	using	some	of	the	String	functions	that	are	available	in	LabVIEW.	

Exercise:	SubVI:	Remove	leading	zeros	in	string.vi	

Create	a	SubVI	which	removes	leading	zeros	in	a	string.	Create	a	Test	VI	that	uses	the	SubVI.	

61	 	 Working	with	Strings	

Tutorial:	An	Introduction	to	LabVIEW	

	

Exercise:	SubVI:	Remove	space	from	end	of	string.vi	

Create	a	SubVI	which	removes	all	spaces	from	the	end	of	the	string.	Create	a	Test	VI	that	
uses	the	SubVI.	

	

Exercise:	SubVI:	Add	2	String.vi	

Create	a	SubVI	which	adds	2	strings	into	one.	Create	a	Test	VI	that	uses	the	SubVI.	

	

	

	

62	

		

9 Error	Handling	
This	chapter	explains	the	basic	concepts	of	handle	errors	in	your	code.	

Topics:	

• Finding	Errors	
• Error	Wiring	
• Error	Handling	

9.1 Finding	Error	
If	a	VI	does	not	run,	it	is	a	broken,	or	“nonexecutable”,	VI.	The	Run	button	often	appears	

broken,	shown	at	left,	when	you	create	or	edit	a	VI.	If	it	is	still	broken	when	you	finish	wiring	
the	block	diagram,	the	VI	is	broken	and	will	not	run.	Generally,	this	means	that	a	required	
input	is	not	wired,	or	a	wire	is	broken.	Click	the	broken	Run	button	to	display	the	Error	list	
window,	which	lists	all	the	errors.	Double-click	an	error	description	to	display	the	relevant	
block	diagram	or	front	panel	and	highlight	the	object	that	contains	the	error.	

9.2 Error	Wiring	
Error	handling	is	important	in	all	programming	languages.	LabVIEW	has	powerful	mechanism	
for	handling	errors	and	error	wiring.	

You	should	always	wire	the	Error	cluster	between	all	SubVIs,	nodes,	etc.	that	support	this,	
see	example	below.	

	

The	Error	cluster	is	located	in	the	Controls	palette	here:	

63	 	 Error	Handling	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

The	Error	Cluster:	

	

The	Error	cluster	contains	of	the	following	parts:	

• Status	–	True/False.	False:	No	Error,	True:	Error	
• Code	–	Error	Code	
• Source	–	Textual	Error	message	

9.3 Error	Handling	in	SubVIs	
When	creating	SubVIs	you	should	always	create	an	Error	In	and	an	Error	Out.	In	the	SubVI	
code	you	should	also	use	a	Case	structure	and	wire	the	Error	in	cluster	to	the	Case	Selector	
as	shown	below.	 	

64	 	 Error	Handling	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

9.4 Error	Handling	
LabVIEW	has	several	useful	SubVIs,	etc.	for	Error	Handling:	

65	 	 Error	Handling	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

These	are:	

	

In	general	you	should	always	show	the	error	to	the	user.	See	LabVIEW	Help	for	more	details	
of	how	to	use	these	SubVIs.	

Exercises	
Exercise:	Error	Handling	

Check	out	the	different	Error	Vis	in	LabVIEW.	Use	them	in	some	of	your	previous	Vis.

	

66	

		

10 Working	with	Projects	
This	chapter	explains	the	basic	concepts	of	the	project	Explorer	in	LabVIEW.	

Topics:	

• Project	Explorer	
• Building	.exe	(executable)	applications	
• Deployment:	Create	an	Installer	

10.1 Project	Explorer	
It	is	not	necessary	to	use	the	Project	Explorer	when	developing	your	LabVIEW	code,	but	it	is	
an	easy	way	to	structure	your	code,	especially	for	larger	projects.	

	

The	project	Explorer	is	necessary	when	you	want	to	deploy	your	code	into,	e.g.,	an	
executable	(.exe)	application,	build	a	setup,	etc.	

67	 	 Working	with	Projects	

Tutorial:	An	Introduction	to	LabVIEW	

The	Project	Explorer	is	also	very	useful	when	you	integrate	a	source	control	tool,	such	as	
Team	Foundation	Server,	Visual	Source	Safe,	etc.	Then	you	may	easily	check	files	in	and	out	
of	the	source	code	system.	 	 	

In	order	to	create	a	new	Project	in	LabVIEW,	simply	select	“Empty	Project”	from	the	Getting	
Started	window	when	you	open	LabVIEW.	

	

10.2 Deployment	
When	your	application	is	finished,	you	may	want	to	distribute	or	deploy	your	application	and	
share	it	with	others.	

The	Project	Explorer	gives	you	several	choices	when	it	comes	to	distribute	and	deploy	your	
application.	Some	of	the	options	are:	

• Create	an	executable	application	(.exe)	–	this	means	that	the	target	doesn’t	need	to	
have	LabVIEW	installed	on	their	computer.	All	the	target	need	is	LabVIEW	Run-Rime,	
which	is	a	small	installation	package.	

• You	may	create	your	own	installer,	so	all	the	target	need	is	to	run	a	setup.exe	in	
order	to	use	your	application	

• Other	possibilities	is	to	create	a	Web	Service	or	a	Shared	Library	(DLL)	of	your	
application	

68	 	 Working	with	Projects	

Tutorial:	An	Introduction	to	LabVIEW	

All	these	options	are	available	from	the	Project	Explorer,	just	right-click	on	your	“Build	
Specifications”	node.	

	

	

We	will	go	through	how	we	create	an	executable	application.	Click	Build	
Specifications→New→Application	(EXE).	

In	the	Properties	window	fill	in	your	name	of	the	application.	

	

69	 	 Working	with	Projects	

Tutorial:	An	Introduction	to	LabVIEW	

Make	sure	you	select	a	Startup	VI.	

	

There	are	lots	of	properties	and	setting	you	may	use	in	order	to	create	your	application,	go	
through	all	the	Categories	in	the	Properties	window.	

When	you	have	finished	all	the	steps,	just	select	“Build”	in	order	to	create	your	application.	

When	you	make	changes	in	your	application,	it	is	easy	to	rebuild	your	application:	

	

Exercises	
Exercise:	Project	Explorer	

Create	a	new	Project	and	put	on	of	your	existing	application	into	the	project	

70	 	 Working	with	Projects	

Tutorial:	An	Introduction	to	LabVIEW	

Exercise:	Deployment	

Create	an	executable	application

	

71	

		

11 Design	Techniques	
This	chapter	explains	some	useful	techniques	to	use	when	creating	your	application.	

Topics:	

• Force	the	Program	Flow	using	an	Error	cluster	
• Shift	Register	
• State	Machine	
• Multiple	Loops	
• Templates	

11.1 Force	Program	Flow	
As	mentioned	earlier,	LabVIEW	follows	a	dataflow	model	for	running	VIs.	A	block	diagram	
node	executes	when	all	its	inputs	are	available.	When	a	node	completes	execution,	it	
supplies	data	to	its	output	terminals	and	passes	the	output	data	to	the	next	node	in	the	
dataflow	path.	

In	the	example	below	we	cannot	be	sure	that	the	DAQmx	Write.vi	executes	before	the	
DAQmx	Stop	Task.vi	executes.	LabVIEW	will	in	this	case	randomly	execute	one	of	these	first.	
If	the	Stop	VI	happens	to	execute	first	then	the	Write	VI	will	failed	because	task	has	been	
stopped.	

	

	

In	the	example	below	we	wire	the	Error	cluster	through	all	the	VIs,	and	there	will	be	no	
doubt	that	the	Write	VI	will	execute	before	the	Stop	VI.	

72	 	 Design	Techniques	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

This	approach	will	also	take	care	of	the	error	handling	in	your	program,	which	is	very	
important	in	real-world	applications.	

11.2 Shift	Register	
Use	shift	registers	on	For	Loops	and	While	Loops	to	transfer	values	from	one	loop	iteration	
to	the	next.	Shift	registers	are	similar	to	static	variables	in	text-based	programming	
languages.	A	shift	register	appears	as	a	pair	of	terminals,	directly	opposite	each	other	on	the	
vertical	sides	of	the	loop	border.	The	right	terminal	contains	an	up	arrow	and	stores	data	on	
the	completion	of	an	iteration.	LabVIEW	transfers	the	data	connected	to	the	right	side	of	the	
register	to	the	next	iteration.	Create	a	shift	register	by	right-clicking	the	left	or	right	border	
of	a	loop	and	selecting	Add	Shift	Register	from	the	shortcut	menu.	

A	shift	register	transfers	any	data	type	and	automatically	changes	to	the	data	type	of	the	
first	object	wired	to	the	shift	register.	The	data	you	wire	to	the	terminals	of	each	shift	
register	must	be	the	same	type.	

To	initialize	a	shift	register,	wire	any	value	from	outside	the	loop	to	the	left	terminal.	If	you	
do	not	initialize	the	shift	register,	the	loop	uses	the	value	written	to	the	shift	register	when	
the	loop	last	executed	or	the	default	value	for	the	data	type	if	the	loop	has	never	executed.	

Use	a	loop	with	an	uninitialized	shift	register	to	run	a	VI	repeatedly	so	that	each	time	the	VI	
runs,	the	initial	output	of	the	shift	register	is	the	last	value	from	the	previous	execution.	Use	
an	uninitialized	shift	register	to	preserve	state	information	between	subsequent	executions	
of	a	VI.	After	the	loop	executes,	the	last	value	stored	in	the	shift	register	remains	at	the	right	
terminal.	If	you	wire	the	right	terminal	outside	the	loop,	the	wire	transfers	the	last	value	
stored	in	the	shift	register.	You	can	add	more	than	one	shift	register	to	a	loop.	If	you	have	
multiple	operations	within	a	loop,	use	multiple	shift	registers	to	store	the	data	values	from	
those	different	processes	in	the	structure.	

73	 	 Design	Techniques	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

11.3 State	Programming	Architecture	
Creating	VIs	using	the	State	Machine	approach	is	very	useful	when	creating	(large)	
applications.	

In	general,	a	state	machine	is	a	model	of	behavior	composed	of	a	finite	number	of	states,	
transitions	between	those	states,	and	actions.	It	is	similar	to	a	"flow	graph"	where	we	can	
inspect	the	way	in	which	the	logic	runs	when	certain	conditions	are	met.	

	

	

Sometimes,	you	may	want	to	change	the	order	of	the	sequence,	repeat	one	item	in	the	
sequence	more	often	than	the	other	items,	stop	a	sequence	immediately,	or	have	items	in	
the	sequence	that	may	execute	only	when	certain	conditions	are	met.	Although	your	
program	may	not	have	any	such	requirements,	there	is	always	the	possibility	that	the	
program	must	be	modified	in	the	future.	Therefore,	a	state	programming	architecture	is	a	
good	choice,	even	if	a	sequential	programming	structure	is	sufficient.	The	following	list	
describes	more	complex	programming	requirements	that	justify	the	use	of	a	state	
programming	architecture	for	an	application.	

74	 	 Design	Techniques	 	

Tutorial:	An	Introduction	to	LabVIEW	

• You	need	to	change	the	order	of	the	sequence	
• You	must	repeat	an	item	in	the	sequence	more	often	than	other	items	
• You	want	some	items	in	the	sequence	to	execute	only	when	certain	conditions	are	

met	

	

The	State	Machine	approach	in	LabVIEW	uses	a	Case	structure	inside	a	While	loop	to	handle	
the	different	states	in	the	program,	and	the	transitions	between	them.	The	Shift	Register	is	
used	to	save	data	from	and	between	the	different	states.	

Below	we	see	examples	of	a	state	machine	principle	implemented	in	LabVIEW.	

Simple	State	Machine	principle	

	

State	Machine	with	multiple	transitions	depending	on	the	State:	

75	 	 Design	Techniques	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

More	advanced	State	Machine	using	Shift	Registers:	

	

11.4 Multiple	Loops/Parallel	
programming	

Often,	you	need	to	program	multiple	tasks	so	that	they	execute	at	the	same	time.	In	
LabVIEW	tasks	can	run	in	parallel	if	they	do	not	have	a	data	dependency	between	them,	and	

76	 	 Design	Techniques	 	

Tutorial:	An	Introduction	to	LabVIEW	

if	they	are	not	using	the	same	shared	resource.	An	example	of	a	shared	resource	is	a	file,	or	
an	instrument.	

	

Using	multiple	While	loops	is	sometimes	useful	in	applications	that	need	to	handle	User	
interactions	in	parallel	with,	e.g.,	DAQ	operations,	etc.	

Below	we	see	an	example	of	how	this	structure	could	look	like.	The	upper	loop	could	handle	
interaction	with	the	user,	while	the	lower	loop	could	handle	DAQ	operations,	such	as	
reading	and	writing	to	some	I/O	equipment.	

	

77	 	 Design	Techniques	 	

Tutorial:	An	Introduction	to	LabVIEW	

In	order	to	pass	data	between	the	loops,	you	may	e.g.	use	local	variables.	The	loop	may	have	
different	time	cycles.	The	I/O	may	require	faster	cycles	than	the	User	interaction	loop.	

11.5 Templates	
You	should	create	your	own	templates	for	such	VI	you	use	a	lot.	It	is	easy	to	create	your	own	
templates	for	scratch,	just	create	a	VI	as	you	normally	do	and	then	save	it	as	a	template	with	
the	ending	“.vit”.	You	may	also	convert	a	VI	you	already	made	just	by	changing	the	extension	
to	“.vit”.	

You	should	copy	your	templates	to	the	LabVIEW	template	folder	which	is	default	located	in	
“C:\Program	Files\National	Instruments\LabVIEW	X.X\Templates\”.	

	

	

The	Templates	will	then	be	available	from	the	Getting	Started	Window	or	File→New…	in	
LabVIEW.	

I	may	case	I	have	created	a	sub	folder	called	“My	Templates”	where	I	place	all	my	templates.	

78	 	 Design	Techniques	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Exercises	
Here	are	some	exercises	about	shift-registers,	State	Machines	and	parallel	programming.	

Exercise:	Shift-register	

Create	a	VI	(see	example	below)	where	you	have	the	following	states:	

• Initialize	
• Write	
• Read	
• Close	

In	the	VI	you	will	use	a	shift-register	as	a	temporary	storage.	In	the	Write	state	you	Write	
Data	to	the	storage	(shift-register)	while	you	in	the	Read	state	will	read	the	Data	from	the	
Storage.	

See	Example	below:	 	 	 	

79	 	 Design	Techniques	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Write	a	Test	program	that	test	the	SubVI,	e.g.,	 	

	

This	example	shows	how	you	can	use	a	shift-register	as	a	temporary	storage,	which	is	very	
useful	in	many	situations.	

Exercise:	State	Machine	

Use	the	State	Machine	principle	on	one	of	your	previous	exercises.	

	

Exercise:	Parallel	Programming	

Create	a	VI	that	consists	of	2	parallel	loops.	Use	local	variables	and	other	mechanisms	in	
order	to	share	data	between	the	2	loops.	

	

Exercise:	Templates	

Strip	some	of	yours	previous	Vis	and	save	them	as	reusable	Templates.	

	

80	

		

12 User	Interface	
This	chapter	explains	the	basic	concepts	of	creating	user-friendly	Graphical	User	Interfaces	
(GUI)	in	LabVIEW.	

Topics:	

• Decorations	
• Tab	Control	
• Splitter	
• Sub	Panel	
• Etc.	

Below	we	see	a	Front	Panel	(GUI)	with	a	“poor”	design.	

	

The	information	(Controls	and	Indicators)	on	the	Front	Panel	is	not	structured.	You	should	
group	elements	that	naturally	belong	together	and	use	different	colors	with	care.	

When	creating	Graphical	User	Interfaces	(GUI)	you	should	use	the	controls	from	the	System	
palette	and	not	from	the	Modern	or	Classic	palettes.	Modern	Controls	may	be	used	in	Sub	
Vis	with	no	visible	User	Interface	(for	the	user).	

81	 	 User	Interface	 	

Tutorial:	An	Introduction	to	LabVIEW	

The	appearance	of	the	controls	in	the	System	palette	is	standard	MS	Windows	look	and	
feeling	and	this	look	is	familiar	for	most	users.	These	controls	also	change	appearance	due	to	
changes	in	the	appearance	in	the	operation	system.	

	

12.1 VI	Properties	
In	order	to	make	the	appearance	of	the	Window	that	hosts	your	application,	you	should	
always	make	some	changes	in	the	“VI	Properties”.	

You	find	the	“VI	Properties”	by	right-click	on	the	icon	in	the	upper	right	corner	of	your	VI.	

	

82	 	 User	Interface	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

The	first	thing	you	should	change	is	the	“Window	title”.	Here	you	may	type	appropriate	
name	of	your	application	or	SubVI.	

The	next	you	should	do	is	to	the	“Customize”	button	in	order	to	customize	the	Window	
appearance.	

	

	

Below	we	see	an	application	with	a	simple	and	neat	User	Interface	and	with	a	Customized	
Windows	appearance.	

83	 	 User	Interface	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

Below	we	see	a	professional	application	created	in	LabVIEW	that	implement	common	GUI	
objects	such	as	a	Toolbar,	a	Tree	view,	a	List	view,	etc..	

	

	 	

84	 	 User	Interface	 	

Tutorial:	An	Introduction	to	LabVIEW	

Exercises	
Exercise:	User	Interface	

Create	a	Dialog	Box	where	you	use	some	of	the	Controls	from	the	System	palette.	Make	the	
necessary	settings	in	VI	Properties	in	order	to	hide	menus,	buttons,	create	a	Title,	etc.	

Create	a	Test	VI	from	where	you	open	this	Dialog	Box,	enter	some	data	in	the	Dialog	Box,	
and	then	retrieve	these	data	in	the	calling	VI.	

Example:	

	

85	

		

13 Plotting	Data	
This	chapter	explains	the	basic	concepts	when	plotting	data	in	LabVIEW.	

LabVIEW	offers	powerful	functionality	for	plotting	data.	In	the	Graph	palette	we	have	lots	of	
useful	controls	for	plotting	and	visualization	of	data.	

	

The	most	useful	are:	

• Waveform	Chart	
• Waveform	Graph	
• XY	Graph	

	

Example:	

This	simple	example	creates	a	graph	with	some	random	values.	

86	 	 Plotting	Data	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

	

The	example	below	show	the	basic	difference	between	a	“Chart”	and	a	“Graph”.	

87	 	 Plotting	Data	

Tutorial:	An	Introduction	to	LabVIEW	

	

You	use	the	“Graph”	if	you	want	to	plot	a	set	of	data,	e.g.,	an	array	with	data,	plot	data	from	
a	file,	etc.	Use	the	“Chart”	if	you	want	to	plot	one	data	point	at	a	time,	e.g.,	inside	a	loop,	
etc.	

13.1 Customizing	
The	different	Chart	components	in	LabVIEW	offer	a	great	deal	of	customizing.	 	

	 You	may	click	on	the	“Plot	Legend”	in	order	to	set	colors,	different	line	
styles,	etc.	

	

	

	

If	you	right-click	on	the	Graph/Chart,	you	may	set	properties	such	as	auto-scaling,	etc.	

88	 	 Plotting	Data	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

If	you	select	Properties,	you	get	the	following	dialog:	

	

	

You	may	also	select	which	items	that	should	be	visible	or	not.	

89	 	 Plotting	Data	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

	 The	“Graph	Palette”	lets	you	zoom	in	and	out	on	the	Graph,	etc.	

Exercises	
Exercise:	Graph	

Create	a	VI	that	reads	data	from	a	file	and	plot	the	data	in	a	Graph	component.	

	

Exercise:	Chart	

Create	a	VI	where	you	use	Data	Binding	in	order	to	retrieve	data	from	an	OPC	demo.	

Data	Binding	is	set	in	the	Properties	→	Data	Binding	tab:	

90	 	 Plotting	Data	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

Exercise:	Customizing	

Customize	the	Graph	and	the	Chart	in	the	examples	above	in	order	to	set	colors,	line	
thickness,	etc.	

	

91	

		

14 Tips	&	Tricks	
This	chapter	gives	you	some	useful	Tips	&	Tricks	regarding	LabVIEW.	

14.1 10	functions	you	need	to	know	
about	

These	are	the	10	most	useful	functions	in	LabVIEW,	so	you	could	already	now	learn	how	to	
use	them	and	where	to	find	them!	

	

Build	Array	

	

This	example	using	the	Build	Array	function	inside	a	For	loop	in	order	build	an	array	with	10	
elements.	

	

Index	Array	

92	 	 Tips	&	Tricks	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

It	is	always	useful	to	find	a	specific	value	in	an	array:	

	

The	Index	Array	is	extendible,	so	you	can	drag	it	out	to	find	more	than	one	elements:	 	

	

	

Array	Size	

	

Find	the	size	of	an	arbitrary	array:	

	

	

Select	

93	 	 Tips	&	Tricks	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Depending	on	the	input	data,	go	to	the	Alarm	case	or	the	Write	Data	case.	

	

Concatenate	Strings	

	

This	function	concatenate	several	strings	into	on	string:	

	

Search	and	Replace	String	

94	 	 Tips	&	Tricks	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Use	this	when	you	want	to	replace	or	remove	a	certain	text	in	a	string.	

	

	

Match	Pattern	

	

This	is	the	most	useful	function	when	it	comes	to	string	manipulation.	

	

	

Format	Into	String	

95	 	 Tips	&	Tricks	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Example:	

	

Fract/Exp	String	to	Number	

	

This	function	converts	a	string	into	a	number:	

	

Example:	Number	To	Fractional	String	

	

Example:	

96	 	 Tips	&	Tricks	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

14.2 The	10	most	useful	Short-cuts	
These	are	the	10	most	useful	short-cuts	in	LabVIEW,	so	you	could	already	now	learn	how	to	
use	them!	

Short-Cut	 Description	
Ctrl	+	B	 Deletes	all	broken	wires	in	a	VI	
Ctrl	+	.	 Stops	the	Running	VI	
Ctrl	+	E	 Toggle	between	the	Front	Panel	and	Block	Diagram	
Tab	 Cycles	through	the	most	common	Tools	(Automatic	Tool	Selection	

should	be	disabled!)	
Ctrl	+	Mouse	
wheel	

Scrolls	through	subdiagrams	in	Case,	Event	or	Sequence	structures	

Ctrl	+	H	 Displays	the	Context	Help	window	
Ctrl	+	Mouse	
Double-click	on	a	
SubVI	

Opens	the	Block	Diagram	directly	

Ctrl	+	Arrows	
(→←←↓)	

Move	faster.	You	first	have	to	select	a	SubVI,	a	Function,	Object,	etc	

Ctrl	+	W	 Close	the	SubVI	
Double-click	on	a	
wire	

Selects	the	hole	wire	

	

97	

		

15 Example	Application	
In	this	example,	we	will	go	through	an	example	application.	The	application	uses	most	of	the	
LabVIEW	features	you	have	learned	in	this	Tutorial.	

The	application	is	called	“Glossary”.	It	is	a	simple	application	that	learns	kid’s	words	in	
English.	Since	the	application	is	for	kids,	the	user	interface	is	create	with	a	“childish”	look	
and	feel.	

	

This	is	an	example	of	how	to	create	a	user-friendly	application	in	LabVIEW	that	uses	most	of	
the	functionality	in	LabVIEW,	such	as	State-machine	principles,	reading	and	writing	to	files,	
dialog	boxes,	graphics	and	sound	effects.	Basic	functions	for	string	and	array	manipulation,	
and	of	course	while	loops,	case	structures,	subVIs,	etc.	The	example	also	uses	the	Project	
Explorer	to	collect	all	the	files	in	one	place	and	to	create	an	executable	file	of	the	solution.	
Finally	it	uses	the	Project	Explorer	to	create	a	setup	package	you	can	use	to	install	the	
application	easily	on	other	computers.	

98	 	 Example	Application	 	

Tutorial:	An	Introduction	to	LabVIEW	

I	created	this	application	for	my	kids	in	the	Primary	school	who	had	problems	with	learning	
their	homework	in	English.	

Below	we	see	the	Glossary	List:	

	 If	you	click	on	the	little	book	symbol	in	your	application,	this	window	will	pop	up:	

	

	 Click	tis	symbol	and	you	can	enter	new	words:	

99	 	 Example	Application	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

The	application	uses	the	Project	Explorer:	

	

100	 	 Example	Application	 	

Tutorial:	An	Introduction	to	LabVIEW	

This	makes	it	easy	to	keep	an	overview	of	all	your	files	in	your	project.	You	may	also	use	the	
Project	Explorer	to	create	an	executable	file	of	your	application.	In	addition	you	may	also	
create	an	installation	package	so	you	can	easily	install	the	application	on	other	computers.	
As	part	of	the	installation	the	LabVIEW	Run-time	engine	will	be	installed.	

Block	Diagram:	

The	application	uses	the	state	machine	principle,	which	makes	it	easy	to	create	large	
applications:	

	

	

101	

	

16 Additional	Exercises	
This	chapter	lists	lots	of	additional	exercises	you	could	try	out	in	order	to	improve	your	
LabVIEW	skills.	

Exercise:	vCard	Reader	

Create	an	application	that	reads	information	from	a	vCard.	

vCard	is	a	file	format	standard	for	electronic	business	cards.	vCards	are	often	attached	to	e-
mail	messages,	but	can	be	exchanged	in	other	ways,	such	as	on	the	World	Wide	Web.	They	
can	contain	name	and	address	information,	phone	numbers,	URLs,	logos,	photographs,	and	
even	audio	clips.	

Example:	

BEGIN:VCARD
VERSION:2.1
N:Gump;Forrest
FN:Forrest Gump
ORG:Bubba Gump Shrimp Co.
TITLE:Shrimp Man
TEL;WORK;VOICE:(111) 555-1212
TEL;HOME;VOICE:(404) 555-1212
ADR;WORK:;;100 Waters Edge;Baytown;LA;30314;United States of America
LABEL;WORK;ENCODING=QUOTED-PRINTABLE:100 Waters Edge=0D=0ABaytown, LA 30314=0D=0AUSA
ADR;HOME:;;42 Plantation St.;Baytown;LA;30314;United States of America
LABEL;HOME;ENCODING=QUOTED-PRINTABLE:42 Plantation St.=0D=0ABaytown, LA 30314=0D=0AUSA
EMAIL;PREF;INTERNET:forrestgump@example.com
REV:20080424T195243Z
END:VCARD

For	more	information	about	the	vCard	format,	see	http://en.wikipedia.org/wiki/VCard.	

The	application	should	look	something	like	this:	

	

When	the	user	click	Open,	then	a	dialog	box	like	this	should	appear:	

102	 	 Additional	Exercises	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Requirements:	

• Use	the	Project	Explorer	
• Use	the	State	Machine	principle	
• Use	the	Event	Structure	
• Use	System	Controls	
• Set	the	appropriate	settings	in	the	VI	Properties.	
• Create	a	executable	application	(vCard.exe)	

	

Exercise:	vCard	Write	&	Read	

Extend	the	application	in	the	previous	example.	You	should	now	be	able	to	both	write	and	
read	vCard	files.	The	application	could	look	something	like	this:	

103	 	 Additional	Exercises	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

When	the	user	clicks	New,	the	dialog	box	in	the	previous	exercise	appears.	The	user	may	
enter	a	new	vCard.	If	the	user	clicks	Edit,	a	dialog	box	with	the	selected	contact	should	
appear.	 	 	

	

Exercise:	Read/Write	from	.ini	files	

Read/Write	from	.ini	files.	Use	the	Configuration	File	VIs:	

	

	

Exercise:	ActiveX	

Create	a	simple	Web	Browser	using	ActiveX	and	the	Internet	Explorer	ActiveX	control	
(Microsoft	Web	Browser)	

Use	the	ActiveX	Container	from	the	Containers	control	palette:	

104	 	 Additional	Exercises	 	

Tutorial:	An	Introduction	to	LabVIEW	

	

Use	the	ActiveX	function	palette:	

	

The	application	could	look	something	like	this:	

	

	

Exercise:	Themes	

105	 	 Additional	Exercises	 	

Tutorial:	An	Introduction	to	LabVIEW	

In	e.g.,	ASP.NET	we	have	something	called	Themes.	Themes	are	used	to	change	the	
appearance	of	your	whole	application	regarding	to	color,	font,	pictures,	etc.	

LabVIEW	do	not	offer	such	a	functionality	,	but	try	to	create	your	own	Theme	Configurator,	
so	you	can	change	the	appearance	of	your	VI	instantly.	

Here	is	an	example	of	how	Windows	XP	handles	different	Themes:	

	

	

Create	a	similar	Theme	Configurator	so	you	may	easily	change	the	appearance	of	your	Vis.

	

106	

	

17 What’s	Next?	

17.1 My	Blog	
For	more	information	about	LabVIEW,	visit	my	Blog:	 	

https://www.halvorsen.blog	 	

LabVIEW	resources:	

https://www.halvorsen.blog/documents/programming/labview/	 	

17.2 Tutorials	
This	Tutorial	is	a	part	of	a	series	with	other	Tutorials	I	have	made,	such	as:	

• Introduction	to	LabVIEW	
• Data	Acquisition	in	LabVIEW	
• Control	and	Simulation	in	LabVIEW	
• LabVIEW	MathScript	
• Linear	Algebra	in	LabVIEW	
• Datalogging	and	Supervisory	Control	in	LabVIEW	
• Model	Predictive	Control	in	LabVIEW	
• Wireless	Data	Acquisition	in	LabVIEW	
• etc.	

These	Training	Kits	are	available	for	download	(.pdf	files,	source	code,	additional	resources,	
etc.)	from	my	blog:	

https://www.halvorsen.blog	 	

17.3 Additional	Resources	
You	find	lots	of	information	about	LabVIEW	in	National	Instruments	web	site:	

www.ni.com	

107	 	 What’s	Next?	 	

Tutorial:	An	Introduction	to	LabVIEW	

17.4 Examples	
In	the	NI	example	Finder	(Help	→	Find	Examples…)	you	find	lots	of	useful	examples	that	you	
can	play	with	or	use	as	a	start	when	creating	your	own	applications.	 	

	

	

	

	

	

	

108	

	

Quick	Reference	

	

Quick	Reference	

Tutorial:	An	Introduction	to	LabVIEW	

	

	

	

	

	

Introduction	to	LabVIEW	
	

Hans-Petter	Halvorsen	

Copyright	©	2017	
	

E-Mail:	hans.p.halvorsen@usn.no	 	

Web:	https://www.halvorsen.blog	 	

	

https://www.halvorsen.blog	

